
DBox: Scaffolding Algorithmic Programming Learning through
Learner-LLM Co-Decomposition

Shuai Ma∗
Aalto University
Espoo, Finland

shuai.ma@aalto.fi

Junling Wang
ETH Zürich

Zürich, Switzerland
junling.wang@ai.ethz.ch

Yuanhao Zhang
The Hong Kong University of Science

and Technology
Hong Kong, China

yzhangiy@connect.ust.hk

Xiaojuan Ma
The Hong Kong University of Science

and Technology
Hong Kong, China
mxj@cse.ust.hk

April Yi Wang
ETH Zürich

Zürich, Switzerland
april.wang@inf.ethz.ch

Abstract
Decomposition is a fundamental skill in algorithmic programming,
requiring learners to break down complex problems into smaller,
manageable parts. However, current self-study methods, such as
browsing reference solutions or using LLM assistants, often pro-
vide excessive or generic assistance that misaligns with learners’
decomposition strategies, hindering independent problem-solving
and critical thinking. To address this, we introduce Decomposition
Box (DBox), an interactive LLM-based system that scaffolds and
adapts to learners’ personalized construction of a step tree through
a “learner-LLM co-decomposition” approach, providing tailored sup-
port at an appropriate level. A within-subjects study (N=24) found
that compared to the baseline, DBox significantly improved learning
gains, cognitive engagement, and critical thinking. Learners also
reported a stronger sense of achievement and found the assistance
appropriate and helpful for learning. Additionally, we examined
DBox’s impact on cognitive load, identified usage patterns, and
analyzed learners’ strategies for managing system errors. We con-
clude with design implications for future AI-powered tools to better
support algorithmic programming education.

CCS Concepts
•Human-centered computing→ Empirical studies in HCI;
Interactive systems and tools.

Keywords
Programming Learning, Self-Paced Learning, Large Language Mod-
els, AI for Coding, Human-AI Collaboration

∗Work done during the first author’s PhD studies at The Hong Kong University of
Science and Technology.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’25, Yokohama, Japan
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1394-1/25/04
https://doi.org/10.1145/3706598.3713748

ACM Reference Format:
Shuai Ma, Junling Wang, Yuanhao Zhang, Xiaojuan Ma, and April Yi Wang.
2025. DBox: ScaffoldingAlgorithmic Programming Learning through Learner-
LLM Co-Decomposition. In CHI Conference on Human Factors in Computing
Systems (CHI ’25), April 26–May 01, 2025, Yokohama, Japan. ACM, New York,
NY, USA, 20 pages. https://doi.org/10.1145/3706598.3713748

1 Introduction
Algorithmic programming, which involves applying algorithms to
solve real-world problems, is a challenging yet essential skill for
computer science learners [6, 69]. Unlike introductory program-
ming, the primary challenge in algorithmic programming lies not
in algorithmic concepts, basic logic or syntax but in decomposing
a complex problem to develop a holistic solution [6, 70]. Students
often struggle with formulating clear strategies, getting stuck at spe-
cific steps, or overlooking edge cases [41, 58]. Online knowledge
communities (e.g., LeetCode) are commonly used for self-study,
where learners can browse reference solutions provided by these
platforms or other online resources (e.g., search engines or Q&A
platforms) when encountering difficulties. However, these resources
are not tailored to individual problem-solving approaches and can
hinder independent thinking and learning.

In addition to traditional resources, the rapid advancement of
large language models (LLMs) has introduced AI tools that rival or
even surpass human performance in certain programming tasks
[20]. Recent studies in CS education and human-computer inter-
action (HCI) have explored the impact of LLM-based tools like
ChatGPT, GitHub Copilot, and Codex on introductory program-
ming (CS1) [19, 31, 34, 63]. While LLMs are increasingly used for
tasks such as code completion, translation, debugging, summariza-
tion, and explanation [29, 64], they are not specifically designed
for educational purposes, leading to issues like over-reliance and
a lack of independent problem-solving [35, 67], as highlighted in
our formative study observing programming learners solving algo-
rithmic problems using various AI support tools. Moreover, most
research has focused on the impact of LLM on novice learners in
introductory programming [19, 31, 34, 63], with little attention
given to how these tools can be tailored to support algorithmic
programming learning. Therefore, we pose the following research
question: How can LLM-supported interfaces be designed to

https://orcid.org/0000-0002-7658-292X
https://orcid.org/0000-0002-4526-2907
https://orcid.org/0000-0001-8263-1823
https://orcid.org/0000-0002-9847-7784
https://orcid.org/0000-0001-8724-4662
https://doi.org/10.1145/3706598.3713748
https://doi.org/10.1145/3706598.3713748

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Shuai Ma, et al.

effectively facilitate pedagogically meaningful learning in
algorithmic programming?

In this paper, we present the Decomposition Box (DBox), a
tool that leverages LLMs to assist learners in decomposing algo-
rithmic programming problems. DBox adopts a Learner-LLM Co-
Decomposition design, where learners lead the decomposition pro-
cess while the LLM provides scaffolding only when needed. DBox
supports two key stages of algorithmic programming: solution for-
mation and implementation. During the solution formation stage,
DBox introduces an interactive step tree that adapts to students’
existing code or natural language thought processes. Students can
express and update their ideas by directly writing code or iteratively
constructing the step tree using interactive features, with DBox
providing real-time feedback on the status of each node. In the im-
plementation stage, DBox validates the alignment between learners’
code and the step tree, identifying the status of each node in real
time. A progressive hint system further supports learners by start-
ing with thought-provoking questions for incorrect or missing steps
and gradually offering more specific hints after repeated attempts.
This design balances problem-solving progress with fostering in-
dependent thinking, with the hint system seamlessly integrated
across both stages.

To evaluate DBox’s effectiveness in supporting algorithmic pro-
gramming learning, we conducted awithin-subjectsmixed-methods
user study with 24 learners. Our analysis highlighted that DBox sig-
nificantly improved students’ programming performance, perceived
learning gains, confidence, algorithmic thinking, and self-efficacy.
Students reported greater cognitive engagement, critical thinking,
and a stronger sense of achievement compared to the baseline,
where many felt they were “cheating” or not solving problems inde-
pendently. DBox was seen as offering more appropriate assistance
and benefiting learning. Since DBox relies on LLM for assessments,
we also conducted a technical evaluation to assess the quality of
LLM prompts used in the pipeline. This evaluation demonstrated
that LLM are sufficiently accurate to support DBox’s features, par-
ticularly in identifying incomplete and incorrect code approaches,
though some challenges were noted in handling natural language
descriptions.

Building on the key findings from our experiment, we provided
several design implications for developing tools that promote algo-
rithmic programming learning. We also discussed DBox’s design
philosophy, particularly the human-AI co-decomposition approach,
and explored how to effectively leverage LLM to support program-
ming learning, even with LLM’s imperfection. In summary, our
contributions are as follows:

• A formative study that identified four challenges learners face in
algorithmic programming learning with existing tools, leading
to four design goals.

• The design of DBox, an AI-assisted algorithmic programming
learning tool, features a scaffolded interactive step tree that fa-
cilitates learner-AI co-decomposition of problems, supporting
both the ideation and implementation stages while fostering
independent thinking and active learning.

• A technical evaluation of LLM’ accuracy in assessing students’
fine-grained thought processes, highlighting where LLMs excel
and where they face challenges.

• A user study reported DBox’s effectiveness on algorithmic pro-
gramming learning, including its effects on learners’ learning
outcomes, perceptions, user experience, and usage patterns.

2 Related Work
2.1 Scaffolding Programming Learning
Scaffolding, rooted in constructivist theory, helps bridge the gap
between learners’ current abilities and desired skills by integrat-
ing new information into existing cognitive frameworks, rather
than passively receiving it [10, 38, 54, 73, 81]. Learners with limited
knowledge particularly benefit from scaffolding to enhance under-
standing and avoid floundering [26, 66]. In programming education,
scaffolding helps structure the learning process, guiding learners
through problem-solving via hints or correcting misconceptions
[38, 72]. Traditional scaffolding often relies on human-provided
support, but recent technological advancements have expanded
its scope to include digital solutions [15, 38]. For example, meth-
ods such as using flowcharts to brainstorm and organize solution
ideas have been shown to improve algorithm design and program-
ming skills [70]. Similarly, Cunningham et al. describe a multi-stage
programming process that includes explicit planning, offering a
structured approach to learning [12]. Generally, providing immedi-
ate assistance during code writing—such as detailed feedback on
errors, suggestions for corrections, or next-step hints—illustrates
key scaffolding strategies that effectively enhance learner under-
standing [62, 68, 72]. Other supportive methods include the use
of worked examples [77] and Parsons problems, which engage
students in active problem-solving [28].

Adaptive scaffolding, which adjusts support based on real-time
feedback from learners, is particularly effective. This approach tai-
lors instruction to the learner’s evolving understanding and knowl-
edge level, though it poses significant challenges for tools that re-
quire cognitive models to interpret learner input [3, 11, 76]. Recent
advancements in large language models (LLMs) have introduced
opportunities for adaptive scaffolding by inferring learner’s mental
state from their inputs, enabling adaptive, learner-specific assis-
tance. However, most LLM applications in scaffolding have been lim-
ited to generating code explanations and next-step hints [50, 63], with
little focus on adaptive scaffolding tailored to individual needs during
algorithmic programming. Our research addresses this gap by using
LLMs to enhance the Zone of Proximal Development (ZPD) [9] in
algorithmic programming through carefully crafted prompts. We
capture students’ thought processes in both code and verbal forms,
forming a step-tree structure that reflects their current thinking.
This model facilitates targeted assistance, assessing and intervening
at various levels for each identified error or gap. By ensuring that
scaffolding aligns with the learner’s current knowledge state and
providing only essential guidance, our approach promotes indepen-
dent thinking and substantially improves learning outcomes.

2.2 AI Coding Assistants and Application in
Educational Contexts

LLMs have demonstrated their capabilities in programming-related
tasks, including delivering precise feedback on syntax errors [57]
and enhancing programming workflows [40]. Sarsa et al. evaluated
OpenAI Codex’s potential for generating engaging programming

DBox: Scaffolding Algorithmic Programming Learning through Learner-LLM Co-Decomposition CHI ’25, April 26–May 01, 2025, Yokohama, Japan

exercises [64], while MacNeil et al. observed that student engage-
ment with LLM-generated code explanations varied depending
on the complexity and length of the content [50]. Additionally,
Prather et al. highlighted the dual-edged nature of GitHub Copi-
lot’s suggestions, cautioning against potential dependency issues
and underscoring the importance of fostering meta-cognitive skills
in novice programmers [60].

Recent work has also explored mapping natural language to
code using LLMs, which aligns with aspects of our approach. For
instance, Liu et al. [43] introduced grounded abstraction match-
ing to help non-expert end-user programmers better understand
LLM capabilities and refine their input for code generation. Their
method iteratively converts natural language to code and back into
grounded utterances to refine user input. While their focus is on
improving language refinement, our work emphasizes scaffolding
learners in decomposition and idea-building for solving algorithmic
problems, placing less priority on natural language quality.

As LLMs advance in code generation, their applications in pro-
gramming education have garnered increasing attention, particu-
larly for creating educational content, enhancing student engage-
ment, and personalizing learning experiences [33]. Recent studies
have examined these opportunities, focusing on task completion
[16], instructional content generation [40], and innovative methods
for content creation [17]. Notably, Finnie-Ansley et al. found that
OpenAI Codex outperformed most students in coding tasks dur-
ing CS1 and CS2 exams [20]. Similarly, Kazemitabaar et al. studied
how AI code generators like Codex support novice learners, show-
ing increased code-authoring performance without compromising
manual code-modification skills [35].

While much of the existing work focuses on introductory pro-
gramming, our research addresses the challenges of advanced algo-
rithmic programming, such as those encountered in CS2 courses.
One closely related piece of work is that of Jin et al. [31], who
designed a teachable agent based on LLMs, employing a learning-
by-teaching approach to help students grasp algorithmic concepts.
However, their focus is primarily on the mastery of algorithmic
concepts, whereas our work addresses the difficulties students face
in applying these concepts to solve practical problems. Another tool
similar to our work is Code Tutor [1], which helps students tackle
programming problems by guiding their thinking without giving
direct answers. However, these conversational LLM tools differ
from DBox in two key ways. First, their chat-based format can lead
to students getting lost in lengthy conversations, whereas DBox
uses an interactive step tree to build a structured mental model.
Second, these tools rely on students inputting code or questions
disconnected from their existing work, while DBox integrates the
step tree with the editor, providing better context understanding
and reducing extra input, thereby improving learning efficiency.

2.3 Computational Thinking and Problem
Decomposition

Computational Thinking (CT), as originally conceptualized byWing
[80], includes essential cognitive processes such as decomposition,
abstraction, generalization, algorithmic thinking, and debugging
[4]. Among these, decomposition is widely recognized as a corner-
stone of CT. Early studies, such as those by Roy Pea, emphasized

how programming environments like LOGO foster planning and
decomposition skills by encouraging learners to break problems
into smaller, manageable subproblems [53, 55]. McCracken et al.
[51] further highlighted its significance through a five-step learning
framework for CS1 courses: (1) abstracting the problem from its
description, (2) generating subproblems, (3) transforming these into
sub-solutions, (4) re-composing them into a complete program, and
(5) evaluating and iterating.

The importance of decomposition is also reflected in various ed-
ucational strategies. For example, Keen and Mammen implemented
a term-long course project that initially provided explicit guid-
ance on program decomposition, gradually reducing support as the
course progressed [37]. Similarly, Sooriamurthi designed an exer-
cise for CS1 students that required segmenting a large programming
task into smaller components, promoting abstraction and iterative
development skills [71]. Pearce et al. adopted a guided inquiry-
based learning method in CS1, explicitly teaching decomposition
strategies and using a rubric to assess students’ skills. Their find-
ings demonstrated that students who received explicit scaffolding
showed greater proficiency in breaking down problems [56].

Despite the well-documented value of decomposition in culti-
vating CT and programming skills, few tools leverage LLMs for
problem decomposition. One related work by Kazemitabaar et al.
[36] explored task decomposition in data analysis programming,
helping users break tasks into substeps or subphases to better steer
and validate LLM-generated assumptions and code. However, their
approach depends on LLMs automatically generating decomposi-
tion solutions for users to review. In contrast, our work emphasizes
scenarios where learners actively develop decomposition skills,
with LLMs providing minimal scaffolding. We term this approach
“learner-LLM co-decomposition”, fundamentally distinct from the
“LLM-generate then user-verify” paradigm.

Tomitigate the aforementioned gaps, this paper introduces DBox,
a tool designed to help students break down complex problems into
manageable steps using a structured step tree. Through learner-
AI co-decomposition, learners actively build the step tree while
receiving step-level feedback from the LLM, enhancing their com-
putational thinking and problem-solving skills.

3 Formative Study
In addition to traditional programming support tools like LeetCode,
search engines, and Q&A sites like Stack Overflow, AI-assisted tools
such as ChatGPT and GitHub Copilot have further enriched these
resources. However, it remains unclear whether these tools effec-
tively enhance algorithmic programming learning and whether
challenges persist despite their availability. To explore this, we con-
ducted a formative study using contextual inquiry and interviews
to understand learner’s needs and obstacles. Our study focuses
on students who have completed foundational computer science
courses and are working to improve their algorithmic problem-
solving skills.

3.1 Study Procedure
We recruited 15 university students (5F, 10M, aged 18-29), includ-
ing 10 undergraduates and 5 graduate students. Most (11) were
computer science majors, with the rest from related fields such as

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Shuai Ma, et al.

data science and electrical engineering. All participants had prior
experience with LeetCode or similar platforms, 14 had used Chat-
GPT for programming tasks, and eight had experience with GitHub
Copilot or similar tools. Each session lasted 40 minutes with $10
compensation.

During the study, participants used tools like LeetCode, search
engines, ChatGPT, and GitHub Copilot to solve a randomly assigned
algorithmic problem for 20minutes, duringwhichwe observed their
tool usage and conducted contextual inquiries as notable behaviors
arose. Afterward, we reviewed their activities and conducted a semi-
structured interview to discuss their tool choices, usage, assistance
received, and perceptions of the tools, including any benefits or
drawbacks they experienced.

3.2 Data Analysis and Results
We conducted inductive thematic analysis [30] on interviews and
contextual inquiry data. Recorded sessions were transcribed and
manually reviewed and corrected by the first author. Two authors
then independently coded the data and discussed to finalize themes
and categorizations. The analysis revealed four key challenges stu-
dents face with existing assistance tools during algorithmic pro-
gramming learning.

3.2.1 Challenge 1: Excessive Help Hindering Active Learn-
ing. Students expressed concerns that platforms like LeetCode and
ChatGPT provide solutions that are too easily accessible, hindering
their ability to engage in independent problem-solving. While learn-
ers typically need minimal guidance to overcome specific hurdles,
these tools often present complete solutions prematurely, making
the learning experience “uninteresting” and “unfulfilling” (P3). As
P1 noted, “I just wanted help with the step I’m stuck on, but the
solution panel [in Leetcode] showed everything, making it hard to
ignore what I didn’t need.” Participants also found it difficult to use
ChatGPT as a learning tool, as it often provided full solutions rather
than encouraging active engagement. P5 explained, “ChatGPT often
directly showed the complete solution and code, even though I just
asked GPT about the specific problem I was facing. Once I saw the
solution, it was hard to ignore it. It felt like I was not really improving
my programming skills.” Additionally, participants like P12 noted
that making ChatGPT useful for active learning required signifi-
cant effort to “carefully craft prompt”, as a result they “just copy the
problem description directly into ChatGPT”.

3.2.2 Challenge 2: Misalignment Between Provided Solu-
tions and Learners’ Own Problem-Solving Approaches. Stu-
dents often struggled when provided solutions failed to align with
their intended approaches or existing code. While learners pre-
ferred developing their own strategies, the solutions offered by
platforms like LeetCode, search engines, or ChatGPT were often
prescriptive that mismatched their efforts. Even when algorithms
matched, differences in specifics made integration challenging, es-
pecially with partial or incorrect code. Rather than starting over,
learners wanted help tailored to their approach and context. As P5
explained, “I prefer sticking to my own ideas. The provided solution
takes a different approach, and I just need help tailored to my method.
I don’t want to change my thinking to fit someone else’s solution, even
if it’s better.” Similarly, P8 noted the frustration of aligning external

solutions with her own work: “I don’t want to scrap my code and
start anew, so I try to align the solution with my code line by line. It’s
tedious to figure out which parts of the solution relate to what I’ve
written, where my errors began, and what I missed.”

3.2.3 Challenge 3: Lack of a Structured Problem-Solving Ap-
proach. Students highlighted the need for a structured method to
break down complex algorithmic problems into manageable steps,
such as initialization, handling edge cases, loops, and return values.
Current tools often present solutions as large blocks of text or code
without clear visual structure. As P13 noted when using LeetCode’s
solution panel, “The solution outlines six steps, but the content is
very disorganized and the text is unclear, making it hard to follow a
structured process.” Some participants preferred step-by-step inter-
actions with ChatGPT, asking specific questions as they progressed.
However, resolving issues often required lengthy, multiple rounds
of conversations, making it difficult to stay organized. Learners
frequently had to scroll back and forth to find points related to
specific steps. As P15 (using ChatGPT) shared, “I had a detailed con-
versation with GPT spanning several pages. Scrolling back to revisit
earlier points was cumbersome, and despite getting answers, it was
hard to organize them into a coherent thought process.”

3.2.4 Challenge 4: Insufficient Fine-Grained Feedback on
Learners’ Coding Progress. LeetCode’s “run code” button evalu-
ates the entire solution and only provides feedback on the overall
correctness. This all-or-nothing approach overlooks partial correct-
ness and fails to highlight specific errors, making it difficult for
students to track their progress or verify their understanding step
by step. For example, P8 noted, “I need to know if a step is correct
before I can decide how to proceed. Without step-by-step feedback, I
can only keep doing it until I complete all the steps.” Additionally,
students wanted early validation of their thought process before
committing to code. Ten participants expressed the need for a fea-
ture to confirm if their approach was on the right track. As P1
stated, “The correctness of my initial thought process is crucial. I
hesitate to implement code until I’m confident it’s correct. There’s no
tool to validate my approach early on.”

3.3 Design Goals
Based on the challenges identified in our formative study, we es-
tablished the following design goals for our tool:
• D1: Scaffolding forActive Learning and Independent Think-
ing: To address Challenge 1, our system should provide scaffold-
ing support. Instead of presenting complete solutions, it should
offer tailored support that encourages active problem-solving
and independent thinking.

• D2: Personalization to Individual Problem-Solving Styles:
In response to Challenge 2, our system should adapt to each
student’s unique problem-solving approach by analyzing how
they break down problems and offering personalized feedback
that preserves and enhances learners’ own strategies.

• D3: Connection and Structured Solution Presentation: To
address Challenge 2&3, our system should visually connect the
system-generated guidance to students’ existing codes and so-
lutions, promoting a structured problem-solving approach that
aligns with their mental models.

DBox: Scaffolding Algorithmic Programming Learning through Learner-LLM Co-Decomposition CHI ’25, April 26–May 01, 2025, Yokohama, Japan

• D4: Fine-Grained Evaluation and Feedback: Addressing Chal-
lenge 4, our system should evaluate the correctness of students’
thought processes—whether conveyed through code, pseudocode,
or natural language—and provide detailed, step-by-step feedback
to support continuous improvement.

4 Decomposition Box
4.1 Overview
As shown in Figure 1 (top row), DBox’s interface has three main
parts. The Problem Description (Figure 1.A)) and Solution Code
Editor (Figure 1.B) are similar to the LeetCode platform. The Inter-
active Step Tree Widget (Figure 1.D) enables users to refine their
thought process and receive feedback via an interactive step tree.
Three buttons—“From Editor to Step Tree”, “Check Match”, and
“Copy to Comments”—connect the editor and step tree. The “Check
Step Tree” button provides feedback on the step tree’s status, catego-
rized into five types (Figure 1.D). Clicking “Hint” offers progressive
guidance based on learners’ existing attempts (Figure 1.E). Hover-
ing over steps shows buttons for editing the step tree (Figure 1.F).
Figure 2 shows two key stages in DBox’s workflow:

• Solution Formation: The step tree starts as an empty box where
students can freely add steps in either coding mode (directly
writing code) or description mode (building a step tree using
natural language). They can evaluate their progress with the
“From Editor to Step Tree” or “Check Step Tree” buttons. The
tree contains steps and substeps labeled as Correct, Incorrect,
System Generated, Missing, or Can be Divided. Layouts adjust
dynamically based on the hierarchy. Steps that can be further
divided are marked with dashed outlines, serving as a reminder,
though students can decide whether further division is necessary.

• Solution Implementation: Students can convert the step tree
into comments with “Copy to Comments” or verify alignment
by clicking “Check Match”. Nodes in the step tree are labeled
as Implemented, Incorrectly Implemented, or To Be Coded. In
this stage, DBox also offers progressive hints. When all nodes are
implemented, students can test their solution by clicking “Run”
button against the provided test cases.

4.2 Target Users and A SystemWalkthrough
DBox is designed for learners who understand basic algorithm con-
cepts but struggle to apply them to solve practical problems. Using
a scaffolding approach, DBox emphasizes independent thinking by
offering only essential support. It assumes students are motivated,
self-regulated, and actively engaging with the tool to improve their
decomposition skills. If a student is less motivated or prefers a
quicker solution, they may bypass DBox to search for answers on-
line. Next, we present an example walkthrough (Figure 1) of such a
self-regulated student Alice:

Alice, a learner tackling the “Search in Rotated Sorted Array”
problem, begins by organizing her thoughts in the solution forma-
tion stage. DBox offers two options: she can either start coding
or build a step tree using natural language. She opts for the latter
and adds two initial steps (Figure 1.1). To check her progress, Alice
clicks “Check Step Tree” button. DBox flags Step 1 as correct, Step 2
as incorrect, and highlights a missing Step 3 (Figure 1.2). She clicks

the hint button on Step 2, receiving general and detailed guidance,
but after another failed attempt, DBox offers another option for
revealing a substep (Figure 1.3). Alice clicks “Reveal (Sub)Step”,
uncovering a sub-step 2-3 while leaving sub-steps 2-1 and 2-2 for
her to solve (Figure 1.4). Inspired by the hints, Alice figures out
how to break down and fills in these sub-steps (Figure 1.5). After
checking again, Step 2 is marked correct (Figure 1.6). Alice adds
the missing Step 3 (Figure 1.7), and finally, after checking, all steps
turn to correct (Figure 1.8).

Next, Alice moves to the solution implementation stage. She
clicks “Copy to Comments”, and DBox converts her step tree into
code comments (Figure 1.9). As Alice writes her code, she uses
the “Check Match” button to identify incorrectly implemented
and unimplemented steps. Step 2 is identified as unimplemented
and Step 3 is identified as incorrectly implemented (Figure 1.10).
Following DBox’s guidance, she revises the code, and after another
check, all steps turn to be correctly implemented (Figure 1.11).
Satisfied with her progress, Alice clicks “Run” and successfully
passes all test cases, solving the problem.

Note that we have presented only a simple walkthrough here,
whereas the steps in a student’s actual problem-solving process are
more complex and dynamic (as shown later in Sec. 7.3). Next, we
introduce the specific features aligned with the four design goals
as described in Sec. 3.3.

4.3 Stage 1: Solution Formation
4.3.1 Two Input Modes (D1, D2, D3). DBox offers users the flexibil-
ity to develop their solutions through two distinct input modes: by
writing code directly or by constructing a step tree using natural
language descriptions, without needing to start with code. In the
latter mode, users begin with a blank step tree and can click “Add”
to insert nodes or “Split” to create sub-steps for more granular de-
tail. Each node contains a text input field where users can articulate
their thought process. Steps and sub-steps can be rearranged or
deleted, allowing learners to iteratively and interactively refine and
structure their mental model.

4.3.2 Inferring Users’ Thought Process from Existing Code (D1, D3).
The “From Editor to Step Tree” function in DBox infers a learner’s
intended solution and thought process based on their incomplete
code. When activated, the system analyzes the code and problem,
presenting the inferred steps as a tree on the right-hand side of the
interface. Hovering over each node highlights the corresponding
lines in the code editor, linking the inferred steps directly to the
code. This feature assists users in diagnosing errors and identifying
potential issues, especially when they are unsure how to proceed.

4.3.3 Step Tree Node Status Evaluation with Preservation of Original
Structure (D2, D4). When the learner clicks “From Editor to Step
Tree” or “Check Step Tree”, DBox evaluates each node, assigning
one of five statuses: (1) Correct: The step aligns with the learner’s
intended approach. (2) Incorrect: Errors are identified in the step.
(3) Missing: A required step is absent. (4) Can Be Divided: The
step is complex and can be broken into sub-steps, indicated by
dashed borders. Users decide whether to subdivide. This status can
coexist with other statuses. (5) System Generated: Step content
is created by the system. This status is triggered only when the

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Shuai Ma, et al.

0

A B

C

D

From Editor
to Step Tree

Check Match

Copy to
Comments

Check Step
Tree

E

8 9 10

After clicking [Copy to Comments] button, the step
tree is converted to comments

After clicking [Check Match] button, DBox identified
which step(s) has/hasn’t been correctly implemented

Learner implements all steps based on progressive
hints. Finally, all steps are correctly implemented.

Hover on a box, the
buttons will appear

Overview of Interface

F

Click the hint button

Hover on a box, corresponding
code line will be highlighted

Learner
constructs an

initial step tree
with two steps

After checking, get
status feedback of

her step tree

After checking, all
sub-steps in Step 2

are correct now

After checking, all
steps are correct

0

General hint

Learner can see
general hint and

detailed hint

Learner fills in the
remaining
substeps

DBox reveals key
sub-steps, leaving
other sub-steps for

students to fill in

Learner fills in Step 3

Detailed hint

After failed
two attempts,

learner can
“reveal step”

Solution Formation

Step 1

Step 2

Step 2-1

Step 2-2

Step 2-3

Step 3

1

2

3

4

5

6

7

8

9

10

11

12

13

1

2

3

4

5

6

7

8

9

10

11

12

13

1

2

3

4

5

6

7

8

9

10

11

12

13

Solution Implementation

1 2 3 4 5 6 7 8

9

Step 1

Step 2

Step 2-1

Step 2-2

Step 2-3

Step 3

Step 1

Step 2

Step 2-1

Step 2-2

Step 2-3

Step 3

1110

Figure 1: The interface of Decomposition Box. The top row displays the full interface in the solution formation stage (the
solution implementation stage is similar, but with different status indicators). The middle row demonstrates a learner’s solution
formation stage showing basic DBox features. The bottom row illustrates a learner’s solution implementation stage. An
overview of the DBox interface and workflow is provided in Sec. 4.1, and an illustrative example is described in Sec. 4.2. To save
space, the second row omits the problem description and editor area, and the third row excludes the problem description area.

DBox: Scaffolding Algorithmic Programming Learning through Learner-LLM Co-Decomposition CHI ’25, April 26–May 01, 2025, Yokohama, Japan

Editor Step Tree

Solution Formation Solution Implementation

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

Accepted

Progressive Hint

Progressive Hint

Correct

Incorrect

System Generated

Missing

Can be Divided

Correct

Incorrect

Missing

Can be Divided

System Generated

Coding
mode

From Editor
to Step Tree

Check Step
Tree

General
Hint

Detailed
Hint

Reveal
Step

Reveal
Code

General
Hint

Detailed
Hint

Description
mode

Copy to
Comments

Check
Match

A

B

C

D E

F

G

Implemented

Incorrectly
Implemented

To be Coded

Implemented

Incorrectly
Implemented

To be Coded

Refine

Refine

Figure 2: The DBox workflow supports learners through solution formation and implementation stages. During solution
formation, (A) students can input ideas by either coding or using natural language to build a step tree. (B) By clicking “From
Editor to Step Tree” or “Check Step Tree”, (C) DBox renders the step tree and identifies node statuses (e.g., correct, incorrect,
missing). Students can iteratively refine their code or step tree, receiving progressive hints, (D) until the step tree is fully correct.
In the solution implementation stage, (E) students can convert the step tree into code comments or (F) check the alignment
between their code and the step tree. Each node displays one of three statuses, and students can refine their work with ongoing
hints until (G) all nodes are marked as “implemented”. Finally, students can test if their code passes all test cases.

learner requests to reveal a (sub)step after repeated failures. During
the “Check Step Tree” process, DBox preserves the original step
tree (both structure and contents), only adding blank nodes for
missing steps, ensuring scaffolding while respecting the learner’s
thought process.

4.3.4 Progressive Hints for Solution Formation (D1). DBox provides
progressive hints to scaffold learners’ problem-solving in three lev-
els: (1) General Hint (Question-Based): Prompts learners’ critical
thinking without revealing solutions, e.g., “Before converting the
string to an array, what should you do first?” (2) Detailed Hint:
Offers more specific clues while requiring reasoning, e.g., “Think
about how you can traverse each character in the string.” (3) Re-
veal (Sub)Step ((Sub)Step Recommendation): For repeated errors,
the AI can suggest a substep within a larger step when users click
the “Reveal (Sub)Step” button. This reveals one key substep while
leaving the remaining steps for the learner to complete. Notably,
students can choose not to trigger this hint. These progressive hints
support problem-solving development while allowing learners to
maintain independence and control.

Once the step tree is complete and all nodes are correct, learners
proceed to the solution implementation stage.

4.4 Stage 2: Solution Implementation
4.4.1 Converting the Step Tree into Comments (D3). This feature
converts each node of the step tree into code comments. When
students click “Copy to Comments”, the system intelligently inserts
these comments into the appropriate sections of the code editor.
This guides learners to implement their solutions within the cor-
responding parts of their code, ensuring a smooth transition from
planning to coding while reinforcing their structured approach.

4.4.2 Validating Code Implementation against the Step Tree (D3,
D4). The “Check Match” button evaluates the alignment between
the code and the step tree. Steps are categorized and color-coded
as: (1) Implemented, (2) Incorrectly Implemented, and (3) To
Be Coded. Hovering over a step highlights the corresponding lines
in the code, providing a direct mapping between the step tree and
the code to help users efficiently debug their implementation.

4.4.3 Progressive Hints for Solution Implementation (D1). For steps
that are incorrectly implemented or yet to be coded, multi-level
hints are available: (1)GeneralHint: Shows simple thought-provoking
prompts/suggestions, e.g., “How should you correctly iterate until

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Shuai Ma, et al.

1

2

3

4

5

6

7

8

9

Problem
Description

Generate step
tree based on

code

Codes

Step Tree

Prompt (from step tree)

Identify the status of each node
in the step tree

Identify and add missing nodes
to the step tree

Generate different level of hints
for each incorrect/missing node

Input Instruction Output from LLM Render to Interface

Prompt
(from code)

Map each line
of code to each

(sub)step

Attribute
Step 1

Step 2

…
…

…

Step 1.1

Step 1.2

Step 1.2.1

Attribute

Figure 3: An illustration of DBox’s data processing workflow highlights its core function—creating a step tree with node statuses
from student inputs. The LLM processes learners’ incomplete code or a step tree they’ve constructed. It outputs a structured
JSON object containing steps, sub-steps (and sub-sub-steps, etc.), each with several attributes. Then the JSON object is rendered
to the interface, preserving the original structure and only adding nodes for any missing steps. Each node keeps the student’s
original input, without directly revealing the correct solution. DBox encodes the status of each step with colors and provides
progressive hints.

the second last character?” (2) Detailed Hint (Pseudocode): Pro-
vides simplified pseudocode to guide the user. (3) Reveal Code
(Recommended Implementation): This option is activated only after
two failed attempts. Clicking the “Reveal Code” button displays the
recommended code implementation for the specific step.

4.5 Backend Design
DBox’s backend is primarily powered by Large Language Models
(the GPT-4o model specifically), with four distinct interactions
corresponding to four buttons in the interface:

• From Editor to Step Tree: This button sends the problem de-
scription and the user’s code to the LLM, which generates a step
tree with nodes labeled as correct, incorrect, missing, or divisible.

• Check Step Tree: Clicking this button inputs the problem de-
scription and the user-constructed step tree into the LLM, which
returns a labeled step tree with node statuses such as correct,
incorrect, missing, or divisible.

• Copy to Comments: This button sends the problem descrip-
tion, current step tree, and user’s code to the LLM, generating a
mapping of step tree nodes to corresponding lines of code.

• Check Match: Pressing this button sends the problem descrip-
tion, step tree, and user’s code to the LLM, which outputs a tree
categorizing nodes as implemented, incorrectly implemented, or
to be coded.

To illustrate, we present the data processing workflow for two
core functions: “From Editor to Step Tree” and “Check Step Tree”.
Figure 3 shows how DBox processes student inputs in two modes:
coding mode and language description mode (step tree input).
Prompts adapt based on the input type. When only code is provided
(dark blue lines in Figure 3), the systemfirst calls [prompt from code]
to generate a step tree, mapping each code line to a corresponding
(sub)step based on the code’s meaning. It then uses the generated

step tree to invoke [prompt from step tree] (orange lines) to evalu-
ate node statuses, add missing nodes, and generate multi-level hints
for incorrect or missing nodes. If the input is a natural language
step tree, the LLM directly calls [prompt from step tree] while pre-
serving the original structure.

The LLM outputs a JSON containing steps, sub-steps, and subdi-
visions, each with attributes like student original input, status (e.g.,
correctness, completeness), LLM-validated content, and hints. The
JSON is rendered conditionally, preserving the student’s original
structure while highlighting missing or incorrect steps. Even if a
student’s input differs from what the LLM considers correct, the
original content is preserved and marked with a status color. Hints
are provided and triggered progressively, offering “just the right”
level of guidance.

4.6 Implementation
For the front-end, we used native HTML, JavaScript, and jQuery.
On the back-end, we deployed the application with the Flask1
framework on our university’s server. The code editor utilized
CodeMirror2 integrated with pyodide.js3 for running Python code.
We employed OpenAI’s GPT-4o model with a temperature of 0.8
to maintain flexibility during scaffolding. To align better with the
front-end’s step tree, we set the response format by setting the
parameter response_format=“type”: “json_object”, restricting the
LLM’s output. Prompts designed with the chain-of-thought (CoT)
technique [78] are detailed in the supplementary materials.

5 Technical Evaluation
In DBox, the key feature is that learners construct a step tree using
either code or natural language descriptions, while the LLM evalu-
ates each step and provides necessary feedback. To assess whether
1https://flask.palletsprojects.com/en/stable/
2https://codemirror.net/
3https://pyodide.org/en/stable/

DBox: Scaffolding Algorithmic Programming Learning through Learner-LLM Co-Decomposition CHI ’25, April 26–May 01, 2025, Yokohama, Japan

effective prompt engineering enables the GPT-4o model (hereafter
referred to as GPT or LLM) to accurately determine node statuses
(i.e., correct, incorrect, or missing), we conducted a preliminary
technical evaluation. Detailed prompts used are provided in the
supplementary material.

5.1 Dataset Creation
We created a dataset of learners’ authentic thought errors to eval-
uate LLMs’ ability to recognize the status of the thought process.
Based on GPT-4’s performance on coding tasks [20, 65], we se-
lected 25 easy-level LeetCode problems covering various algorithms
and data structures problems (e.g., dynamic programming, sorting,
greedy algorithms).

To capture natural variations, we recruited five computer science
students from a local university to manually create the step trees
for five randomly selected problems (25 in total). Using correct code
samples as references, annotators constructed a step tree based on
their solution, including steps, substeps, and sub-substeps. They
described each node in their own words and linked it to the relevant
code. After collecting the annotated step trees, we manually created
various types of errors to simulate common student misconceptions
in coding [61]. An algorithmic programming expert created seven
error types for each problem (e.g., missing steps, incorrect step
order, logical errors, and syntax errors), which were reviewed by
another expert, resulting in 175 error-laden step trees (25 problems
x 7 error types).

5.2 Analysis Approach
We divide the steps into two parts based on the expert annotations:
the correct part (1) or the incorrect/missing part (0). To calculate the
performance of GPT, we use a very strict evaluation method: if all
steps in the correct part are determined to be correct, the prediction
of this part is marked as 1; otherwise, the prediction is 0. Simi-
larly, if all steps in the incorrect/missing part are determined to be
incorrect/missing, the prediction of this part is 0; otherwise, the pre-
diction is 1. This approach enabled calculation of accuracy, F1 score,
precision, recall, specificity, false positive rate, and false negative
rate. We removed status fields from 175 error-containing step trees
and input them into GPT for prediction. The results were compared
against expert-annotated ground truth. For incorrect predictions,
two authors independently coded GPT’s outputs to identify error
themes and causes, later consolidated through discussion.

5.3 Results
As shown in Table 1, GPT more accurately identifies students’
thought processes when expressed through code rather than
natural language. This difference may stem from GPT’s exten-
sive code-based training data [42] and specialized code-handling
mechanisms [2], while natural language descriptions often include
imprecise or non-standard terminology, leading to ambiguities [43].

GPT sometimes identifies incorrect steps as correct (false
positives) or correct steps as incorrect (false negatives). For se-
quence change errors, GPT’s accuracy drops to 70% with an F1 score
of 72% from natural language descriptions, with a False Positive
Rate (FPR) of 36% and a False Negative Rate (FNR) of 24%. In con-
trast, code-based evaluations achieve 100% accuracy and F1 scores.

For logical errors from natural language, GPT’s accuracy is 88% (F1
score 87%, FPR 8%, FNR 16%), compared to 98% accuracy and F1
scores from code-based evaluations (FPR 4%, FNR 0%). Missing step
error evaluations from natural language yield 86% accuracy (FPR
16%, FNR 12%), improving to 92% from code inputs (FPR/FNR 8%).
Syntax error identification remains steady at 90% accuracy and F1
score.

Additionally, we find that GPT occasionally alters the struc-
ture and content of the step tree, despite instructions to only
add missing steps. It sometimes modifies how steps are segmented
or misinterprets the student’s original input. Another key finding
is that GPT sometimes incorrectly judges non-standard ap-
proaches as wrong. In five out of 25 tasks, GPT mistakenly flagged
correct solutions as incorrect simply because they deviated from
the common approaches in its training data. For example, it marked
a sorting-based solution as incorrect, even though it was correct,
albeit not the most optimal approach.

In summary, GPT demonstrates strong capabilities in process-
ing code-based inputs but faces challenges with natural language,
particularly in detecting sequence changes. Our analysis of partici-
pants’ logs from the user study revealed that most errors encoun-
tered were logical errors or missing steps, while errors involving
sequence changes were relatively uncommon. This suggests that
GPT is generally effective in evaluating students’ thought processes
during algorithmic programming learning. We recommend that
researchers considering GPT for supporting learners in natural lan-
guage programming carefully evaluate its limitations and conduct
technical assessments to determine its suitability for their specific
scenarios. We hope this technical evaluation serves as a valuable
reference for similar future research.

6 User Study
We conducted a user study to evaluate the effects of DBox, focusing
on three questions:

• Q1: How does DBox support algorithmic programming learning?
• Q2: How does DBox affect learners’ perceptions and user experi-
ence?

• Q3: How do learners interact with DBox and perceive the useful-
ness of different features?

6.1 Conditions
We conducted a within-subjects design to control for individual
differences in programming abilities. Participants experienced two
conditions in a randomly assigned order:

• DBox: Participants solved problems using the proposed DBox.
• Baseline: Participants freely used any available tools (e.g., Chat-
GPT, Copilot, search engines, LeetCode, QA platforms) to reflect
their real-world learning habits, with no restrictions on tool usage
or combinations.

6.2 Task and Materials
In this experiment, participants solve problems from two distinct
algorithm types. Each type includes a learning problem, where
participants use DBox or baseline tools, and a test problem, solved
independently without assistance.

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Shuai Ma, et al.

Table 1: The technical evaluation of GPT-4o assesses its ability to identify the status of learners’ steps. Precision refers to the
proportion of steps correctly predicted as correct by GPT. TPR (True Positive Rate) measures the proportion of truly correct
steps that GPT identifies correctly. TNR (True Negative Rate) reflects the proportion of truly incorrect/missing steps that GPT
correctly predicts. FPR (False Positive Rate) indicates the proportion of incorrect/missing steps that GPT incorrectly predicts as
correct. FNR (False Negative Rate) represents the proportion of correct steps that GPT incorrectly predicts as incorrect/missing.

Error Type Accuracy F1 Precision TPR/Recall TNR/Specificity FPR FNR
Identify step/substep status from learners’ natural language-based step descriptions
Sequence Changed 0.70 0.72 0.68 0.76 0.64 0.36 0.24

Logical Error 0.88 0.87 0.91 0.84 0.92 0.08 0.16
Missing 0.86 0.86 0.85 0.88 0.84 0.16 0.12

Identify step/substep status from learners’ codes
Sequence Changed 1.00 1.00 1.00 1.00 1.00 0.00 0.00

Logical Error 0.98 0.98 0.96 1.00 0.96 0.04 0.00
Missing 0.92 0.92 0.92 0.92 0.92 0.08 0.08

Syntax Error 0.90 0.90 0.88 0.92 0.88 0.12 0.08

We selected problems from the LeetCode problem bank based
on several criteria: First, all problems were of medium difficulty,
with an acceptance rate between 40% and 50% to ensure sufficient
challenge. Second, GPT performs well on these problems. Third, the
two algorithm types are distinctly different to avoid learning effects.
Finally, the learning and test problems within each algorithm type
require similar programming skills to avoid unfair comparisons due
to differences in additional coding skills needed for each problem.
Based on these criteria, we chose two algorithm types: Greedy and
Binary Search. For Greedy, we selected “Jump Game”4 and “Jump
Game II”5; for Binary Search, we selected “Search in Rotated Sorted
Array”6 and “Search in Rotated Sorted Array II”7.

To help participants become familiar with or recall the algorithms
used in the study, we provide them with lecture materials prior to
the start of the study. The lecture materials for the two types of
algorithms were sourced from GeeksforGeeks89. These materials
include an introduction to each algorithm, illustrated figures, and
practical examples.

6.3 Procedure
As shown in Figure 4, obtaining participants’ consent, we begin
by explaining the study’s objectives and procedure. We then fa-
miliarize participants with the algorithms they will be practicing
using the provided lecture materials. Note that the lecture material
was designed to help participants recap the key concepts of these
two algorithms. Although the two problems are labeled as Binary
Search and Greedy on the LeetCode platform, participants were
not restricted to using these two specific approaches to solve the
problems. Afterwards, we administer a pre-test problem to assess
their expertise. We also have participants rate their confidence in
solving the problem on a 7-point Likert scale following [31]. Af-
ter participants completed the task or indicated they could not
proceed, the two authors (as experiment operators) assessed their

4https://leetcode.com/problems/jump-game/description/
5https://leetcode.com/problems/jump-game-ii/description/
6https://leetcode.com/problems/search-in-rotated-sorted-array/description/
7https://leetcode.com/problems/search-in-rotated-sorted-array-ii/description/
8Greedy: https://www.geeksforgeeks.org/introduction-to-greedy-algorithm-data-
structures-and-algorithm-tutorials/
9Binary Search: https://www.geeksforgeeks.org/binary-search/

solutions against pre-verified answers (with multiple solutions).
Participants who solved the problem correctly were excluded, as it
suggested higher expertise in the tested problem type. Following
[31], we also excluded participants who rated their confidence at
6 or above, as high self-confidence likely indicates less need for
additional support. While self-reported confidence may not always
align with actual ability, this criterion helps focus the study on the
intended user group for our tool. We then provided participants
with an interactive tutorial to familiarize them with DBox. The
tutorial guides them through each view, button, and functionality
of the tool. After the tutorial, they can explore the tool by solving
an exercise problem, different from the two problem types in the
main study.

Next, we assigned experimental conditions and problem types to
participants with a counterbalanced design. Within each problem
type, one problem is randomly assigned in the learning session and
the other in the testing session. In the learning session, participants
use either DBox or baseline tools, during which they must success-
fully pass all test cases to proceed. They then complete an in-task
survey about their perceptions and experience with the tool they
just used. In the test session, participants solve problems without
any tool assistance. After completing both problem types, they fill
out a post-task survey, followed by a semi-structured interview.

6.4 Participants
We conducted a power analysis using G*Power [18] for our two-
condition within-subjects design. Assuming an effect size of 𝑓 = 0.6
(moderate), 𝛼 = 0.05, and power of 0.8, we estimated a required
sample size of 24 participants.

After IRB approval, we recruited 24 participants via emails and so-
cial media at local universities (10 female, 14 male, average age 23.5,
SD = 1.7). The group included 16 undergraduates and eight graduate
students, with majors in computer science (17), data science (3),
electrical engineering (3), and mathematics (1). Most participants
(18) coded weekly, six coded monthly, and 23 had used platforms
like LeetCode. The 90-minute study compensated participants with
20 USD, equating to 13 USD/hour.

DBox: Scaffolding Algorithmic Programming Learning through Learner-LLM Co-Decomposition CHI ’25, April 26–May 01, 2025, Yokohama, Japan

Type 1-
Problem 1

Type 1-
Problem 2

Type 2-
Problem 1

Type 2-
Problem 2

Post-task
Survey

InterviewLecture
Materials

and Pre-test

Tutorial and
familiaration

Condition

Problem Type
Counter-balance + Randomization

• Decomposition Box
• Baseline

• Greedy
• Binary Search

Learning
Session

Testing
Session

(without tool)

In-task
Survey

Figure 4: The procedure of our user study. To avoid learning effects, we used a counterbalanced design with four combinations:
(1) DBox-Type1→ Baseline-Type2, (2) Baseline-Type1→ DBox-Type2, (3) DBox-Type2→ Baseline-Type1, and (4) Baseline-Type2
→ DBox-Type1. For each combination, six participants were randomly assigned.

6.5 Measurements
Our measurements are summarized in Table 2. To address Q1 (ef-
fects on learning outcomes), we assessed correctness in the testing
session [34], perceived learning gain [84], confidence in solving sim-
ilar problems [25], improvement in algorithmic thinking [82], and
self-efficacy [74, 83]. For Q2 (effects on perceptions and user expe-
rience), we measured cognitive engagement [59], critical thinking
[32], sense of achievement [79], feeling of cheating [34], perceived
help appropriateness, usefulness [14], mental demand, effort, frus-
tration [24], ease of use, satisfaction [7], and future use intention
[27]. For Q3 (usage patterns and perceptions of DBox), we ana-
lyzed usage logs (e.g., clicks, edits, help-seeking), post-task feature
ratings, and conducted semi-structured interviews to delve into
participants’ underlying reasons behind their perceptions, usage
patterns, and reactions to AI errors. All questionnaires used a 7-
point Likert scale.

6.6 Data Analysis
To eliminate the unfair comparison caused by the learning effect of
participants using both tools to solve the same type of problem, we
selected two distinct problem types. We implemented a random-
ization procedure to ensure that each participant used either DBox
or the baseline tool in a random order, with a randomly assigned
problem type for each tool. As a result, each participant used only
one tool to solve one problem.

For the quantitative analysis, we employed a linear mixed effects
model to analyze the data. The dependent variables (DVs) were
our outcome measures (e.g., scores or questionnaire ratings). First,
we analyzed the main effect of the two different tools (the coef-
ficient and p-value were reported based on this analysis). Then,
we examined the interaction effects between the learning tool and
problem type (Tool*Problem Type), as well as the interaction effect
between the learning tool and the order of tool usage (Tool*Order).
The fixed effects in the models included the learning tool, problem
type, and the order of tool usage, while the random effect accounted
for individual differences between participants.

For the qualitative analysis of our semi-structured interview
data, grounded in the designed questions, we conducted a thematic

analysis [30]. Two authors independently coded the data, devel-
oped a codebook, and reached a consensus through discussion. In
the results, we present key themes supported by representative
participant quotes.

7 Results
In this section, we examine how DBox supports learners in algo-
rithmic programming and how they interact with the tool. We
compared DBox with the baseline tool and analyzed the interaction
effects between tool and problem type, as well as the ordering effect
(e.g., DBox first or Baseline first). Overall, we didn’t find signifi-
cant interaction or ordering effects for most metrics. Therefore, we
report only the differences between the two tools unless notable
interactions or ordering effects were observed, which are analyzed
in detail.

7.1 How does Decomposition Box help with
algorithmic programming learning?

We first compared the correctness scores of participants’ test ses-
sion submissions under both DBox and baseline conditions. As
shown in Figure 5 (a), participants using DBox achieved signifi-
cantly higher correctness scores than those in the baseline condition
(𝐶𝑜𝑒 𝑓 .=0.198, 𝑝<0.05), suggesting that practicing with DBox bet-
ter prepared learners to transfer their skills to similar algorithmic
challenges.

This finding aligns with participants’ subjective perceptions.
Figure 5 (b) shows that learners in the DBox condition reported sig-
nificantly higher perceived learning gains (𝐶𝑜𝑒 𝑓 .=2.250, 𝑝<0.001),
higher confidence in solving similar problems (𝐶𝑜𝑒 𝑓 .=2.333, 𝑝<0.001),
more improvements in algorithmic thinking (𝐶𝑜𝑒 𝑓 .=3.875, 𝑝<0.001),
and greater self-efficacy (𝐶𝑜𝑒 𝑓 .=3.042, 𝑝<0.001) compared to the
baseline condition.

Interview analysis further highlighted that participants felt solv-
ing tasks independently during the learning session enhanced their
perceived learning gains. Overcoming challenges on their own also
boosted their confidence. In contrast, baseline participants felt their
algorithmic thinking was underdeveloped due to easy access to
complete solutions (e.g., via search, ChatGPT, or Copilot), leading

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Shuai Ma, et al.

Table 2: Measurements used in our user study. For the questionnaire items (within the quotation marks), a 7-point Likert scale
was used, with 1 indicating “Strongly disagree/Very low” and 7 indicating “Strongly agree/Very high”.

Metrics Detailed Meaning and Questions

Q1

Correctness Score
The correctness of learners’ test task solutions was evaluated using a consistent rubric from
[34]. Two authors independently graded submissions, deducting 25% for each major issue or
missing component, yielding scores of 0%, 25%, 50%, 75%, or 100%. They agreed on 87.5% of
submissions, resolving disagreements through discussion for the rest.

Perceived Learning Gain "I have learned how to solve this type of problem."
Confidence in Solving

Similar Problems "After solving this problem with the tool’s help, I feel confident in tackling similar problems."

Perceived Algorithmic
Thinking Improvement

"This tool improved my ability to break down complex problems into smaller, manageable
parts."

Self-Efficacy "I have mastered the problem-solving skills necessary for this type of problem."

Q2

Cognitive Engagement "I was cognitively engaged in the programming exercises."
Critical Thinking "The learning process challenged me to think critically."

Sense of Achievement "I feel a sense of accomplishment/achievement when I complete the programming task."
Sense of Cheating "Using this tool feels like cheating."

Perceived
Appropriateness of Help "I felt I received the right amount of help when needed—neither too much nor too little."

Perceived Usefulness "This tool is useful for learning how to solve specific problems."
Mental Demand "How mentally demanding was the task?"

Effort "How hard did you have to work to achieve your level of performance?"
Frustration "How insecure, discouraged, irritated, stressed, and annoyed were you?"
Ease of Use "I find this tool easy to use for learning algorithms."
Satisfaction "I am satisfied with the overall learning experience using this tool."
Future Use "I would like to use this tool in my future programming learning."

Q3

Button Clicking (with timestamp) From Editor to Step Tree, Check Step Tree, Check Match, From Step Tree to
Comments, Run Code

Editing (with timestamp) Code edit, step tree edit
Help-Seeking (with timestamp) see general hint, see detailed hint, and reveal step/code

Usefulness Rating Participants’ ratings on the usefulness of various features in DBox using a 7-point Likert scale

Interviews Participants’ detailed reasons for their perceptions, reactions to AI errors, and self-reported
usage patterns, etc.

to lower perceived learning and confidence. As P5 noted, “Even
though I couldn’t write the full solution, the tool [DBox] encouraged
me to break down the problem. I started with what I knew, and the
tool guided me through the rest. Decomposing the problem helped me
structure my approach, and as I saw the step tree fill in correctly, I felt
my algorithmic thinking improve, and I gained confidence in solving
the problem.”

7.2 How does Decomposition Box affect
learners’ perceptions and user experience?

7.2.1 Effects on Learners’ Perceptions. As shown in Figure 6, par-
ticipants in the DBox condition reported significantly higher cog-
nitive engagement (𝐶𝑜𝑒 𝑓 .=2.625, 𝑝<0.001), greater critical think-
ing (𝐶𝑜𝑒 𝑓 .=3.375, 𝑝<0.001), and a stronger sense of achievement
(𝐶𝑜𝑒 𝑓 .=3.375, 𝑝<0.001) compared to the baseline condition. Con-
versely, those in the baseline condition felt their problem-solving
process resembled more “cheating” (𝐶𝑜𝑒 𝑓 .=-4.250, 𝑝<0.001). DBox
was also rated as providingmore appropriate assistance (𝐶𝑜𝑒 𝑓 .=2.625,
𝑝<0.001) and beingmore useful for programming learning (𝐶𝑜𝑒 𝑓 .=2.792,
𝑝<0.001). Interviews supported these results, with 19 participants

noting that DBox allowed them to independently develop their
thought process while offering just enough feedback to guide them.
This stimulated high engagement in problem-solving, as they criti-
cally analyzed both the overall solution and each step. As P1 noted,
“When I hit a block, unlike other tools (referring to the baseline), DBox
didn’t give me the answer outright, which forced me to think through
the problem myself. Even with help, I still had to do most of the
thinking.”

In contrast, baseline participants using tools like ChatGPT, Copi-
lot, or LeetCode often bypassed independent thinking, focusing
on comparing or copying provided answers. Twelve out of 24
compared answers while coding, and eight simply copied solutions,
leading to a lack of achievement and a sense of “cheating”. As P16
(using ChatGPT) admitted, “I tried to convert its provided code into
my own, but I didn’t feel like it was truly my solution; there was no
sense of achievement.” Besides, excessive help in the baseline
tools led participants to feel it was unhelpful for learning.
For example, P23 (who used LeetCode’s built-in solution) shared, “I
was stuck on a small part, but the solution showed the entire answer
immediately. I memorized it, but later, writing the code felt more like

DBox: Scaffolding Algorithmic Programming Learning through Learner-LLM Co-Decomposition CHI ’25, April 26–May 01, 2025, Yokohama, Japan

* *** ***

(a) (b)

*** ***

Perceived

Learning Gain

Confidence in

Solving Similar

Problems

Algorithmic

Thinking

Improvement

Self-Efficacy

Figure 5: Effects on participants’ learning outcomes: (a) Participants’ correctness scores during the testing session, where they
solved the problem independently. (b) Participants’ self-reported metrics on their learning outcomes.

E g g m t Cr t c Th k g Ach v m t Ch t g Appr pr t U fu

*** *** *** *** ***

Figure 6: Participants’ perceptions of the two conditions in their learning process.

**

Mental Demand Effort Frustration Easy of Use Satisfaction Future Use

*** ***

Figure 7: Participants’ cognitive load and user experience.

repetition than actual learning.” P15 (using ChatGPT) added, “Chat-
GPT explained the problem and gave the full code. While its solution
seemed right, I realized I was just judging its correctness rather than
improving my programming skills.”

Moreover, we found an interaction effect between tool and prob-
lem type (𝐶𝑜𝑒 𝑓 .=1.250, 𝑝<0.05) in perceived usefulness. Post-hoc
analysis showed that DBox outperformed the baseline in both Bi-
nary Search (𝑡 = 6.159, 𝑝 < 0.001) and Greedy problems (𝑡 = 9.273,
𝑝 < 0.001). With DBox, there was no significant difference in per-
ceived usefulness between the two problems (𝑡 = 0.294, 𝑝 = 0.771).
However, with the baseline, perceived usefulness was lower for the
Greedy problem compared to Binary Search (𝑡 = −2.755, 𝑝 < 0.05).
We found no significant interaction effects on correctness scores,
with participants showing similar performance across the two prob-
lems using either DBox or the baseline. This suggests that the lower
perceived usefulness of the baseline for the Greedy problem was
not due to the problem being inherently more difficult. A likely

explanation is that the Greedy problem requires higher planning
and decomposition skills (i.e., breaking a complex problem into
subproblems solvable by a greedy algorithm) and the baseline did
not provide scaffolding to support this, leading to lower perceived
usefulness.

7.2.2 Effects on Learners’ User Experience. As shown in Figure 7,
participants in the DBox condition found the learning process more
mentally demanding (𝐶𝑜𝑒 𝑓 .=1.125, 𝑝<0.01) and reported putting in
more effort (𝐶𝑜𝑒 𝑓 .=1.625, 𝑝<0.001) than those in the baseline con-
dition. This aligns with our expectations, as DBox requires learners
to independently construct a step tree rather than merely providing
solutions. Interestingly, there were no significant differences in frus-
tration levels between the two conditions (𝐶𝑜𝑒 𝑓 .=-0.375, 𝑝=0.305),
suggesting that while DBox encouraged independent thinking and
led to some failed attempts, the process of building the step tree did
not cause excessive frustration. However, we found a significant

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Shuai Ma, et al.

P23 E SD H S D E SD S R S E S E

P24 S E E EH E E E E EEH EH ER ER ER

P22 E ED SD E EH

P21 S H S SD R S H S S S H S ER E ED ED

P20 E ED EH SD ED EH SD EH EH ED ED ED EH

P19 S ED ED S SD R S SD R S H S H S SD EH E E

P18 S SD R S SD SD EH

P17 E ED ED S E ED E E E

P16 S H S SD ER ED E

P15 E SD SD ED SD ER ED ED H S R S ER ED ER

E S EH EHP2

E ED SD R S SD SD ED SD E ESP3

P4 S SD R S H SSD E ED S R S SD R S SD H S ED ER

P12 E ED SD E EH

P10 E ED SD ED EH SD EH EH ED ED ED EH

P5 E SD SD SD ER ED ED H S R S ER

P1 S ERH S SD ED EH SD EH EH ED ED ED EH

P14 S E EH E E EEH EH ER ERH S D E

P13 E H S SD S R S EED ED

P11 H S SD R S H S H S ER E ED EDE

P9 S ED S SD R S SD R S H S H S SD EH E ES

P8 S SD R S SD SD EH ER E

P7 E ED E E E EEH ER

P6 S H S SD ER ED E E E
Editing/Help Seeking

Button Clicking

E Edit Code

S Edit Step Tree

H See General Hint

D See Detailed Hint

R Reveal Step

From Editor To Step Tree

Check Step Tree

Check Match

Copy To Comments

Run Code

Flexible switching between
coding and step tree building

Building the step tree before
writing code

Using DBox for verification
purposes

Pattern

Figure 8: Participants’ three distinct types of system usage, each represented by a different color. We analyzed participants’
interactions, including code editing, step tree editing, help-seeking, and five types of button clicks.

ordering effect on frustration (𝐶𝑜𝑒 𝑓 .=1.917, 𝑝<0.01). Post-hoc anal-
ysis showed no significant difference between the two tools when
DBox was used first (𝑡=1.186, 𝑝=0.248), but participants reported
significantly higher frustration with the baseline when it was used
first (𝑡=2.491, 𝑝<0.05). One possible explanation is the “learning
effect” of soliciting assistance – using DBox first better prepared
participants to request targeted assistance from the baseline. This
aligns how participants expressed frustration with the unsolicited
assistance from the baseline. For example, P2 (using Copilot) com-
mented, “I typed a variable and hit [Tab], and Copilot suggested the
entire code. However, the suggestion was different from what I had in
mind, and I ended up spending time trying to understand it, which
was frustrating.”

We expected participants to find DBox less easy to use due to
its more complex operations, but participants’ perceived ease of
use (𝐶𝑜𝑒 𝑓 .=0.750, 𝑝=0.063) did not differ significantly between con-
ditions. Interviews revealed that in the baseline condition, partici-
pants often had to switch between the editor and solution pages or
spend time crafting precise prompts for ChatGPT. As P6 noted, “I
had to explain the problem and my understanding to ChatGPT, which
was quite complex. I didn’t just want to copy its answer, so I con-
stantly did line-by-line comparison between ChatGPT-provided code
and my code.” Moreover, participants reported significantly higher
satisfaction (𝐶𝑜𝑒 𝑓 .=3.125, 𝑝<0.001) and a greater willingness to use
DBox for future programming learning (𝐶𝑜𝑒 𝑓 .=2.042, 𝑝<0.001).

7.3 How do learners interact with
Decomposition Box and perceive the
usefulness of different features?

7.3.1 Learners’ Overall Usage Patterns. During the user study, we
tracked participants’ interactions with DBox, focusing on key ac-
tions such as code editing, step tree editing, help-seeking, and five
main button clicks (e.g., From Editor to Step Tree, Check Step Tree,
Check Match, Copy to Comments, and Run Code). These interac-
tions are visualized in Figure 8, and we analyzed the patterns in
combination with interview data.

Students adopted varying approaches when using DBox. Eleven
began by constructing the step tree interactively, while thirteen
started by writing code directly. We identified three distinct usage
patterns:

Type 1: Building the step tree before writing code. Some par-
ticipants (P6, 8, 9, 14, 16, 18, and 21) focused on constructing the
step tree first, iteratively checking and refining it before moving on
to code implementation. This approach enabled them to write code
efficiently once the structure was finalized. As P21 noted, “I used
natural language to express my thoughts and verify them, and after a
few iterations, I recognized valid ideas and wrote the code myself.” P6
added, “Writing code from scratch is more challenging for complex
problems, so I prefer starting with the step tree.”

Type 2: Using DBox for verification. Some participants (P7,
12, 17, 22, and 24) used DBox primarily to verify their code. They

DBox: Scaffolding Algorithmic Programming Learning through Learner-LLM Co-Decomposition CHI ’25, April 26–May 01, 2025, Yokohama, Japan

wrote code first, then used the “From Editor to Step Tree” feature to
check correctness and get hints. P17 explained, “I usually solve prob-
lems by writing code first. Describing each step in natural language
doesn’t feel natural for me.” Similarly, P22 stated, “I know the general
direction, so I write code first and use the tool to verify correctness or
catch edge cases.”

Type 3: Flexible switching between the two modes. Students
like P1-5, 10, 11, 13, 15, 19, 20, and 23 alternated between coding and
step tree construction, adjusting their approach based on confidence,
familiarity with specific steps, and real-time coding challenges. For
example, P19 stated, “If I’m confident in certain steps, I code first
and then convert it to steps for verification. If unsure, I verify my
thought process before coding.” P2 added, “For familiar problems, I
code first and refine it with the step tree. For new problems, I outline
my thoughts and break down the steps to ensure accuracy before
coding.” P10 shared, “Initially, I felt confident, but when I got stuck, I
refined my understanding of a step in the step tree before continuing
with the code.”

7.3.2 Hint Usage and Problem-Solving Approach. We tracked hint
usage frequency among all 24 participants, recording a total of 164
hints triggered. Only 32 instances (19.5%) involved the “reveal sub-
step” feature, showing that students mainly relied on simpler hints
and did not exploit the system by repeatedly making errors. This
feature reveals only one sub-step from the user’s incorrect or miss-
ing step—leaving the rest for them to solve independently—and can
only be triggered after repeated struggle. This approach maximally
preserves the students’ independent problem-solving process. It
strikes a balance between fostering independent thinking and pre-
venting students from becoming permanently stuck, which could
otherwise lead to frustration or a loss of motivation to learn.

We did a qualitative analysis which revealed varied problem-
solving approaches adopted by participants in the problem-solving
processes. For the “Can Jump” problem, tackled by 12 participants,
we observed three approaches: Greedy (7 participants), Dynamic
Programming (3), and Recursion (2). The other 12 participants
addressed the “Search in Rotated Sorted Array” problem, using
Binary Search (8), Two Pointers (2), Binary Tree (1), and Divide
and Conquer (1). We observed that participants using the same
approach still exhibited differences in reasoning and coding styles.
Despite these variations, DBox effectively adapted its support to
align with their individual styles and reasoning processes.

7.3.3 Learners’ Reactions to System Errors. DBox, powered by the
GPT-4o model, occasionally misjudged step statuses. During our
user study, 24 participants triggered the “check” function (“Check
Step Tree” and “From Editor to Step Tree”) 208 times, with 16 partic-
ipants encountering 18 system errors (an 8.7% error rate). Fourteen
participants faced one error each, while two experienced two errors.
These errors can be categorized into four types:

• Type-1 (11 occurrences): Misjudging correct steps as incorrect.
– Example: A participant using a greedy approach stated, “Use a
greedy approach to minimize jumps.” GPT flagged this as incorrect
due to insufficient detail on range expansion and jump counter
updates. However, missing details does not necessarily mean the
solution is incorrect.

• Type-2 (2 occurrences): Flagging unnecessary steps as missing.

– Example: GPT incorrectly required a check for single-element
arrays, though the solution worked without it.

• Type-3 (3 occurrences):Overlooking subtle mistakes in seemingly
correct steps.
– Example: A participant’s wrote a step “Iterate through the array.
If at any index i, maxReach < i, return false”, leading to errors
with unreachable indices. GPT failed to detect this error.

• Type-4 (2 occurrences):Missing crucial steps while DBoxmarking
solutions as complete.
– Example:A participant omitted a final return statement (return
true), GPT still judged the solution as correct.
We then analyzed whether participants successfully identified

the system errors and how they reacted to the errors. We found that
all the 16 students who encountered system errors recognized these
errors after one or more attempts. Since DBox evaluates rather than
generates content, students remained confident in verifying their
own work, which minimized over-reliance on the system. However,
incorrect judgments, particularly when correct steps were flagged
as wrong, could disrupt their thought process. The impact of these
errors largely depended on the student’s confidence. As P15 noted,
“If I know it’s wrong, I ignore the message. If I’m unsure, I might follow
the hint.”

Students adopted various strategies to deal with system errors.
(1) Ignoring the error (8 participants): Some simply moved on
after recognizing a misjudgment. (2) Focusing on the hint, not
the status (6 participants): Even if the status evaluation was in-
correct, participants often found the hints useful. For example,
participants wrote very brief steps, which GPT flagged as incorrect.
The hints prompted them to consider important details, and despite
the incorrect judgment, participants found the hints very useful.
(3) Running the code to verify (12 participants): Many used the
“Run” button to test their hypotheses. As P2 explained, “If my code
works, I stick with my approach. If it fails, I reconsider the system’s
judgment.” (4) Rechecking the step (10 participants): Some partic-
ipants revisited a step to refresh its status. As P3 mentioned, “Even
if the system is wrong, rechecking helps me identify potential issues.”

Though system errors are unavoidable at the current stage,
DBox’s design allows learners to quickly recognize and manage
them. Future improvements should aim to minimize disruptions
caused by system inaccuracies.

7.3.4 Learners’ Ratings of Different Features of DBox. DBox offers
a range of features designed to enhance algorithmic programming
learning, most of which participants found helpful, as illustrated in
Figure 9. Students particularly appreciated the flexibility to either
write code directly or build a step tree, and they valued DBox’s
ability to infer their thought process from the code. The interactive
step tree and the fine-grained correctness assessment were also
well-received, although two participants found it somewhat cum-
bersome. The progressive, multi-level hint system was praised by
22 participants. Additionally, the feature that checks the alignment
between the step tree and the code implementation was seen as
highly beneficial. However, some participants felt that the ability
to paste the step tree as comments into the editor was unnecessary,
since the step tree and code editor could already be viewed side by
side. This feature could be even more useful if DBox were developed
as a plugin in the future.

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Shuai Ma, et al.

1 13

9 9

7 8

2 8 9 5

4 6 4

10 7

Strongly Disagree Disagree Somewhat Disagree Neutral Somewhat Agree Agree Strongly Agree

13 14 15 16 17 18 19 20 21 22 23 240 1 2 3 4 5 6 7 8 9 10 11 12

Allowing leaners form solution through two modes

Identifying learners’ thoughts based on their incomplete codes

Providing Fine-Grained Feedback on the status of each node

Progressive Multi-level guidance

Copying step tree into the code editor as comments

Checking the match between step tree and code implementation

1 2 7

1 5

2 7

1 2 7

2 5

Figure 9: Participants rated the features of DBox based on their firsthand experience during the experiment. In the questionnaire,
they provided feedback from a first-person perspective (e.g., “I think [feature] is useful”, rated on a 7-point Likert scale).

8 Discussion
In this paper, we adopted a learner-centered design approach, be-
ginning with a formative study to identify students’ challenges
with existing tools. Based on these insights, we developed DBox,
a tool that scaffolds students in breaking problems into smaller
parts and provides personalized, adaptive support. Our user study
demonstrated that DBox improved learners’ performance on similar
algorithmic problems, increased perceived learning gains, and fos-
tered greater cognitive engagement, achievement, and satisfaction.
In this section, we discuss design implications and generalizability
based on our key findings.

8.1 Chaining Learners’ Thoughts with
Visualized Structured UI Components

Decomposition requires students to effectively organize their thoughts.
While visual elements are known to promote structured thinking
and support mental model construction [44, 52], our formative and
user studies revealed shortcomings in existing tools like LeetCode
and ChatGPT, which rely on textual representations without ad-
equately supporting structured mental models. In contrast, DBox
uses an interactive step tree to visually organize learners’ thoughts.
This feature was praised by 22 of 24 participants for enhancing
algorithmic thinking, serving as a progress tracker, and providing
value even without AI assistance.

DBox’s interactive step tree and tree-based scaffolding demon-
strate the broader potential of intelligent tutoring systems (ITS) to
promote active learning and self-regulated problem-solving in fields
requiring problem decomposition. Similar principles could benefit
STEM education, such as physics or engineering, by externalizing
abstract concepts and facilitating multi-step problem-solving. Addi-
tionally, progress-tracking visual components may inspire designs
for professional training tools in areas like medical diagnostics or
software engineering.

8.2 Promoting Independent Thinking and
Active Decomposition Learning

8.2.1 Transforming Learners from Passive Readers to Active
Thinkers. Many coding tools provide direct answers or solutions

[35, 57], which, while efficient, often bypass opportunities to de-
velop critical problem-solving skills. In contrast, DBox cultivates
students’ decomposition abilities through structured scaffolding,
fostering critical thinking and self-regulated learning in line with
learning by doing [5] and constructivist principles [73].

To strengthen decomposition skills, DBox first encourages stu-
dents to develop their own decomposition strategies by coding or
building a step tree from scratch. While DBox can generate parts
of a step tree from a student’s existing code, these steps are derived
from the learner’s own reasoning, with DBox acting solely as a
modality converter. Besides, DBox provides feedback on tree node
statuses, identifying potential errors or missing steps without di-
rectly showing the correct answer, challenging students to critically
evaluate and refine their decomposition plans.

DBox’s scaffolded hint system further supports decomposition
skill development by providing adaptive guidance tailored to the
student’s progress without overwhelming them. All hints are based
on the learner’s current decomposition skeleton, with the most de-
tailed hint—“reveal substep”—triggered only after repeated attempts
and struggles. Notably, even the most detailed hints prompt only
one substep, requiring students to complete the rest independently.
As shown in Sec 7.3.2, only 19% of hints are this detailed, with
students primarily relying on simpler, thought-provoking question
hints. This scaffolded support system balances guidance and in-
dependent thinking, keeping students engaged during challenges
without compromising their ability to independently decompose
problems [39].

Based on these findings, we recommend fostering active problem-
solving by shifting students from passive content consumption to
active solution creation. Designers could adopt layered scaffolding,
startingwithminimal guidance and increasing support as needed, to
help students progressively master decomposition skills while main-
taining confidence and avoiding frustration. Additionally, adaptive
learning techniques, such as real-time feedback and progress track-
ing, can further tailor the support to individual decomposition bar-
riers, encouraging deeper engagement with decomposition tasks.
Moreover, designers could integrate metacognitive strategies, such
as encouraging students to articulate or reflect on their decompo-
sition approaches, to further enhance critical thinking and foster
habits of independent thinking.

DBox: Scaffolding Algorithmic Programming Learning through Learner-LLM Co-Decomposition CHI ’25, April 26–May 01, 2025, Yokohama, Japan

8.2.2 Choice of Scaffolding: Balancing Independent Problem-
Solving and Efforts. Scaffolding involves providing tailored sup-
port to help learners accomplish tasks they cannot yet complete in-
dependently [38, 73]. Broadly, scaffolding strategies fall into two cat-
egories [75]: (1) gradually reducing assistance as learners gain pro-
ficiency, and (2) encouraging independent problem-solving while
offering incremental support to address challenges. DBox adopts
the second approach, emphasizing independent thinking and en-
couraging learners to actively decompose problems [85]. While
our scaffolding strategies successfully enhanced critical thinking,
satisfaction, and perceived usefulness, they also led to increased
cognitive effort (Sec. 7.2.2). This tradeoff underscores the impor-
tance of carefully balancing cognitive effort with the promotion of
independent thinking.

Future designs could incorporate adaptive scaffolding that ad-
justs support dynamically based on learner proficiency, reducing
unnecessary effort in areas where students have demonstrated com-
petence. Additionally, while incremental scaffolding was effective
for algorithmic problem-solving, tailoring strategies to different
educational contexts could enhance their applicability in diverse
domains. Such adaptive, context-specific approaches could further
optimize the balance between support and independence in learning
environments.

8.3 Supporting Personalized Algorithmic
Programming Learning

8.3.1 Prioritizing Learners’ Own Solutions Over Optimality.
Algorithmic problems often have multiple solutions with varying
time and space complexities. DBox prioritizes independent explo-
ration by supporting learners’ strategies rather than steering them
toward a single “optimal” solution. Using LLM-driven prompts, it
evaluates and guides each step based on the learner’s reasoning, pre-
serving their step decomposition and respecting their input—even
when errors occur. While some solutions may not be the most effi-
cient, this approach fosters autonomy by aligning feedback with
learners’ thought processes instead of enforcing rigid standards.

Our user study showed that this approach improves learning
outcomes and is well-received by students. We recommend design-
ing systems that respect personalized problem-solving strategies
by aligning feedback with learners’ reasoning while allowing for
diverse approaches. Designers should balance flexibility and rigor,
using prompts and interfaces that support varied strategies while
gently guiding learners toward effective solutions.

8.3.2 Catering to Individual Learning Styles and Contextual
Needs. DBox accommodates diverse problem-solving approaches
with two input modes: coding and natural language descriptions.
Each mode offers distinct advantages tailored to different learners,
stages, and situations. Learners can switch seamlessly between
modes, with progress automatically synced across the interface.
Features such as verifying code-step alignment ensure strong inte-
gration between modes.

Our findings reveal that this flexibility enhances user experience.
Participant interaction logs and interviews revealed three usage
patterns, highlighting that each mode fits different needs: code
mode works well for students with a clear and detailed problem-
solving plan already, while the step tree with natural language

descriptions helps less experienced students with only a basic idea
who are not ready to write code directly, boosting their confidence.

We argue there is no universal “best” mode for programming ed-
ucation—each has unique benefits depending on the learner habits,
expertise, and context. Future tools should provide flexibility, like
DBox, or use adaptive algorithms to recommend modes based on
user needs and context. This flexibility highlights the importance
of designing educational tools that accommodate varying levels of
expertise and problem-solving styles, which can be generalized to
other domains requiring personalized learning [8].

8.4 Appropriate Usage of LLMs for Supporting
Algorithmic Programming Learning

8.4.1 Caution About LLM Errors. Although LLMs have shown
strong performance in coding tasks [20, 40], they remain prone
to errors. Our technical evaluation and user study revealed that
even with comprehensive context—such as problem statements,
user code, and natural language steps—LLM sometimes misinter-
prets user descriptions. These errors likely arise from discrepancies
between the natural language used by students and the formal, pre-
cise language the LLM was trained on, which is primarily sourced
from web-based code and comments [43].

Such misinterpretations can hinder learning by causing confu-
sion or frustration. While future improvements to training data and
GPT versions may mitigate these issues, design strategies can help
address them. First, LLMs should avoid giving direct solutions and
instead focus on fostering active problem-solving through explana-
tions and hints. Second, feedback could be paired with interactive
features, like a “Run Code” option, allowing students to validate
their reasoning. Third, simple tutorials could teach users how to
phrase their descriptions more clearly, improving LLM’s under-
standing. Additionally, future tools could integrate a “Language
Enhancement” feature to suggest improvements or assess the clar-
ity of descriptions, aiding LLM in accurately capturing user intent.
Most importantly, we recommend designers prioritize technical fea-
sibility, such as conducting rigorous evaluations like ours, before
fully integrating LLMs into programming learning tools.

8.4.2 Learner-LLM Co-Decomposition of Solutions: Learner
as Leader, LLM as Aid. A central feature of DBox is the con-
struction of a step tree, where students break solutions into steps
and sub-steps. The LLM supports this by mapping code to step
descriptions, evaluating them, and offering hints. However, stu-
dents maintain full control, deciding how to decompose problems
and define each step, fostering independent thinking. The LLM acts
solely as an aid, using a scaffolding approach to support the develop-
ment of learners’ Zone of Proximal Development (ZPD) [9]. Unlike
tools like ChatGPT or Copilot that dominate problem-solving, DBox
fosters deeper cognitive engagement. Students reported greater ac-
complishment and found this approach more effective for learning.

This contrasts with existing human-AI collaboration paradigms
in non-educational scenarios where AI usually suggest options, leav-
ing final decisions to users [13, 22, 23, 48, 49], such as in human-AI
decision-making [45–47]. Some educational tools, like Jin et al. [31],
use LLMs to generate solutions for students to evaluate, which aids
in syntax learning but such “LLM-generate then learner-evaluate”
approach is less effective for algorithmic problem-solving, where

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Shuai Ma, et al.

constructing solutions is key. Just evaluating LLM-generated con-
tents can place a cognitive anchor on learners [21], limiting indepen-
dent thinking and creativity. Thus, task allocation between humans
and AI should align with the educational context (e.g., whether it
is basic knowledge/concept learning or higher-level creative think-
ing). Future LLM-based educational tools should carefully define
the division of roles between LLMs and learners, tailoring it to
specific learning contexts and goals.

8.5 Limitations and Future Work
This study has several limitations. First, we tested DBox’s effective-
ness on only two problem types; future work should examine a
broader range of algorithms. Second, participants engaged in just
one learning session per condition due to time constraints, whereas
mastering algorithmic problems typically requires extended prac-
tice. Longitudinal studies should explore how DBox supports skill
development over time, including changes in mental models and
skill retention. Third, we assessed learning gains based on correct-
ness in a test session using similar learning and test problems.
Future research should evaluate knowledge transfer to less similar
problems. Due to time constraints, we conducted a single post-
test rather than a pre-post comparison. While pre-test expertise
filtering and randomization minimized prior familiarity effects, a
more rigorous pre-post design would yield more accurate learning
gain measurements. Looking ahead, we plan to release DBox as
a Chrome plugin for integration with existing coding platforms,
enabling large-scale field studies. This will allow for the collection
of long-term usage data and periodic surveys to identify usage
patterns and learning experiences over time.

9 Conclusion
In this paper, we introduced DBox, an interactive tool designed to
help learners decompose algorithmic programming problems by
supporting both solution formation and implementation. Featuring
an intuitive tree-like box widget, DBox accepts input in both code
and natural language, fostering independent problem-solving while
its step tree structure helps learners develop structured mental mod-
els. It provides step-level feedback and layered guidance without
compromising learner autonomy. Our user study showed that DBox
significantly improved learning outcomes, cognitive engagement,
and critical thinking, with students reporting a greater sense of
achievement and finding the support highly effective. Additionally,
we identified three key usage patterns, highlighting the importance
of accommodating individual problem-solving styles. Moreover, our
findings suggest that the learner-LLM co-decomposition approach
fosters independent thinking while providing meaningful guidance,
even with occasional imperfections. We hope the insights from our
system design will inspire future research on integrating LLMs into
educational tools for programming learning.

Acknowledgments
This research was supported by the Dieter Schwarz Stiftung Foun-
dation, ETH Foundation, and in part by the EdUHK-HKUST Joint
Centre for Artificial Intelligence (JC_AI) research scheme: Grant
No. FB454.

References
[1] Khan Academy. 2024. Code Tutor. https://chatgpt.com/g/g-HxPrv1p8v-code-

tutor Accessed: September 10, 2024.
[2] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-

cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774
(2023).

[3] Vincent AWMM Aleven and Kenneth R Koedinger. 2002. An effective metacogni-
tive strategy: Learning by doing and explaining with a computer-based cognitive
tutor. Cognitive science 26, 2 (2002), 147–179.

[4] Charoula Angeli, Joke Voogt, Andrew Fluck, Mary Webb, Margaret Cox, Joyce
Malyn-Smith, and Jason Zagami. 2016. A K-6 computational thinking curricu-
lum framework: Implications for teacher knowledge. Journal of Educational
Technology & Society 19, 3 (2016), 47–57.

[5] Yuichiro Anzai and Herbert A Simon. 1979. The theory of learning by doing.
Psychological review 86, 2 (1979), 124.

[6] Roland Backhouse. 2011. Algorithmic problem solving. John Wiley & Sons.
[7] Aaron Bangor, Philip T Kortum, and James TMiller. 2008. An empirical evaluation

of the system usability scale. Intl. Journal of Human–Computer Interaction 24, 6
(2008), 574–594.

[8] Matthew L Bernacki, Meghan J Greene, and Nikki G Lobczowski. 2021. A sys-
tematic review of research on personalized learning: Personalized by whom, to
what, how, and for what purpose (s)? Educational Psychology Review 33, 4 (2021),
1675–1715.

[9] Seth Chaiklin et al. 2003. The zone of proximal development in Vygotsky’s
analysis of learning and instruction. Vygotsky’s educational theory in cultural
context 1, 2 (2003), 39–64.

[10] Michael Cole, Vera John-Steiner, Sylvia Scribner, and Ellen Souberman. 1978.
Mind in society. Mind in society the development of higher psychological processes.
Cambridge, MA: Harvard University Press (1978).

[11] Cristina Conati and Kurt Vanlehn. 2000. Toward computer-based support of
meta-cognitive skills: A computational framework to coach self-explanation.
International Journal of Artificial Intelligence in Education 11 (2000), 389–415.

[12] Kathryn Cunningham, Barbara J Ericson, Rahul Agrawal Bejarano, and Mark
Guzdial. 2021. Avoiding the Turing tarpit: Learning conversational programming
by starting from code’s purpose. In Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems. 1–15.

[13] Hai Dang, Sven Goller, Florian Lehmann, and Daniel Buschek. 2023. Choice
over control: How users write with large language models using diegetic and
non-diegetic prompting. In Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems. 1–17.

[14] Fred D Davis. 1989. Perceived usefulness, perceived ease of use, and user accep-
tance of information technology. MIS quarterly (1989), 319–340.

[15] Erhan Delen, Jeffrey Liew, and Victor Willson. 2014. Effects of interactivity
and instructional scaffolding on learning: Self-regulation in online video-based
environments. Computers & Education 78 (2014), 312–320.

[16] Paul Denny, Viraj Kumar, and Nasser Giacaman. 2023. Conversing with copilot:
Exploring prompt engineering for solving cs1 problems using natural language. In
Proceedings of the 54th ACM Technical Symposium on Computer Science Education
V. 1. 1136–1142.

[17] Paul Denny, Sami Sarsa, Arto Hellas, and Juho Leinonen. 2022. Robosourcing
Educational Resources–Leveraging Large Language Models for Learnersourcing.
arXiv preprint arXiv:2211.04715 (2022).

[18] Franz Faul, Edgar Erdfelder, Axel Buchner, and Albert-Georg Lang. 2009. Sta-
tistical power analyses using G* Power 3.1: Tests for correlation and regression
analyses. Behavior research methods 41, 4 (2009), 1149–1160.

[19] James Finnie-Ansley, Paul Denny, Brett A Becker, Andrew Luxton-Reilly, and
James Prather. 2022. The robots are coming: Exploring the implications of openai
codex on introductory programming. In Proceedings of the 24th Australasian
Computing Education Conference. 10–19.

[20] James Finnie-Ansley, Paul Denny, Andrew Luxton-Reilly, Eddie Antonio Santos,
James Prather, and Brett A Becker. 2023. My ai wants to know if this will be on
the exam: Testing openai’s codex on cs2 programming exercises. In Proceedings
of the 25th Australasian Computing Education Conference. 97–104.

[21] Adrian Furnham and Hua Chu Boo. 2011. A literature review of the anchoring
effect. The journal of socio-economics 40, 1 (2011), 35–42.

[22] Jie Gao, Yuchen Guo, Gionnieve Lim, Tianqin Zhang, Zheng Zhang, Toby Jia-
Jun Li, and Simon Tangi Perrault. 2024. CollabCoder: a lower-barrier, rigorous
workflow for inductive collaborative qualitative analysis with large language
models. In Proceedings of the CHI Conference on Human Factors in Computing
Systems. 1–29.

[23] Simret Araya Gebreegziabher, Zheng Zhang, Xiaohang Tang, YihaoMeng, Elena L
Glassman, and Toby Jia-Jun Li. 2023. Patat: Human-ai collaborative qualitative
coding with explainable interactive rule synthesis. In Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems. 1–19.

[24] Sandra G Hart. 2006. NASA-task load index (NASA-TLX); 20 years later. In
Proceedings of the human factors and ergonomics society annual meeting, Vol. 50.

https://chatgpt.com/g/g-HxPrv1p8v-code-tutor
https://chatgpt.com/g/g-HxPrv1p8v-code-tutor

DBox: Scaffolding Algorithmic Programming Learning through Learner-LLM Co-Decomposition CHI ’25, April 26–May 01, 2025, Yokohama, Japan

Sage publications Sage CA: Los Angeles, CA, 904–908.
[25] Heris Hendriana, Tri Johanto, and Utari Sumarmo. 2018. The Role of Problem-

Based Learning to Improve Students’ Mathematical Problem-Solving Ability and
Self Confidence. Journal on Mathematics Education 9, 2 (2018), 291–300.

[26] Cindy E Hmelo-Silver, Ravit Golan Duncan, and Clark A Chinn. 2007. Scaffolding
and achievement in problem-based and inquiry learning: a response to Kirschner,
Sweller, and. Educational psychologist 42, 2 (2007), 99–107.

[27] Richard J Holden and Ben-Tzion Karsh. 2010. The technology acceptance model:
its past and its future in health care. Journal of biomedical informatics 43, 1 (2010),
159–172.

[28] Xinying Hou, Barbara Jane Ericson, and Xu Wang. 2022. Using adaptive par-
sons problems to scaffold write-code problems. In Proceedings of the 2022 ACM
Conference on International Computing Education Research-Volume 1. 15–26.

[29] Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo,
David Lo, John Grundy, and Haoyu Wang. 2024. Large language models for
software engineering: A systematic literature review. ACM Transactions on
Software Engineering and Methodology 33, 8 (2024), 1–79.

[30] Hsiu-Fang Hsieh and Sarah E Shannon. 2005. Three approaches to qualitative
content analysis. Qualitative health research 15, 9 (2005), 1277–1288.

[31] Hyoungwook Jin, Seonghee Lee, Hyungyu Shin, and Juho Kim. 2024. Teach
AI How to Code: Using Large Language Models as Teachable Agents for Pro-
gramming Education. In Proceedings of the CHI Conference on Human Factors in
Computing Systems. 1–28.

[32] Carol S Kamin, Patricia S O’Sullivan, Monica Younger, and Robin Deterding. 2001.
Measuring critical thinking in problem-based learning discourse. Teaching and
learning in medicine 13, 1 (2001), 27–35.

[33] Enkelejda Kasneci, Kathrin Seßler, Stefan Küchemann, Maria Bannert, Daryna
Dementieva, Frank Fischer, Urs Gasser, Georg Groh, Stephan Günnemann, Eyke
Hüllermeier, et al. 2023. ChatGPT for good? On opportunities and challenges
of large language models for education. Learning and individual differences 103
(2023), 102274.

[34] Majeed Kazemitabaar, Justin Chow, Carl Ka To Ma, Barbara J Ericson, David
Weintrop, and Tovi Grossman. 2023. Studying the effect of AI code generators
on supporting novice learners in introductory programming. In Proceedings of
the 2023 CHI Conference on Human Factors in Computing Systems. 1–23.

[35] Majeed Kazemitabaar, Xinying Hou, Austin Henley, Barbara Jane Ericson, David
Weintrop, and Tovi Grossman. 2023. How novices use LLM-based code generators
to solve CS1 coding tasks in a self-paced learning environment. In Proceedings of
the 23rd Koli Calling International Conference on Computing Education Research.
1–12.

[36] Majeed Kazemitabaar, Jack Williams, Ian Drosos, Tovi Grossman, Austin Zachary
Henley, Carina Negreanu, and Advait Sarkar. 2024. Improving steering and
verification in AI-assisted data analysis with interactive task decomposition. In
Proceedings of the 37th Annual ACM Symposium on User Interface Software and
Technology. 1–19.

[37] Aaron Keen and Kurt Mammen. 2015. Program decomposition and complexity
in CS1. In Proceedings of the 46th ACM technical symposium on computer science
education. 48–53.

[38] Minchi C Kim and Michael J Hannafin. 2011. Scaffolding problem solving in
technology-enhanced learning environments (TELEs): Bridging research and
theory with practice. Computers & Education 56, 2 (2011), 403–417.

[39] Päivi Kinnunen and Lauri Malmi. 2006. Why students drop out CS1 course?. In
Proceedings of the second international workshop on Computing education research.
97–108.

[40] Juho Leinonen, Arto Hellas, Sami Sarsa, Brent Reeves, Paul Denny, James Prather,
and Brett A Becker. 2023. Using large language models to enhance programming
error messages. In Proceedings of the 54th ACM Technical Symposium on Computer
Science Education V. 1. 563–569.

[41] Marcia C Linn and John Dalbey. 1985. Cognitive consequences of programming
instruction: Instruction, access, and ability. Educational Psychologist 20, 4 (1985),
191–206.

[42] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2024. Is your
code generated by chatgpt really correct? rigorous evaluation of large language
models for code generation. Advances in Neural Information Processing Systems
36 (2024).

[43] Michael Xieyang Liu, Advait Sarkar, Carina Negreanu, Benjamin Zorn, Jack
Williams, Neil Toronto, and Andrew D Gordon. 2023. “What it wants me to
say”: Bridging the abstraction gap between end-user programmers and code-
generating large language models. In Proceedings of the 2023 CHI Conference on
Human Factors in Computing Systems. 1–31.

[44] Zhicheng Liu and John Stasko. 2010. Mental models, visual reasoning and inter-
action in information visualization: A top-down perspective. IEEE transactions
on visualization and computer graphics 16, 6 (2010), 999–1008.

[45] Shuai Ma, Qiaoyi Chen, Xinru Wang, Chengbo Zheng, Zhenhui Peng, Ming Yin,
and Xiaojuan Ma. 2024. Towards human-ai deliberation: Design and evaluation
of llm-empowered deliberative ai for ai-assisted decision-making. arXiv preprint
arXiv:2403.16812 (2024).

[46] Shuai Ma, Ying Lei, Xinru Wang, Chengbo Zheng, Chuhan Shi, Ming Yin, and
Xiaojuan Ma. 2023. Who Should I Trust: AI or Myself? Leveraging Human and
AI Correctness Likelihood to Promote Appropriate Trust in AI-Assisted Decision-
Making. In Proceedings of the 2023 CHI Conference on Human Factors in Computing
Systems. 1–19.

[47] Shuai Ma, Xinru Wang, Ying Lei, Chuhan Shi, Ming Yin, and Xiaojuan Ma. 2024.
" Are You Really Sure?" Understanding the Effects of Human Self-Confidence
Calibration in AI-Assisted Decision Making. arXiv preprint arXiv:2403.09552
(2024).

[48] Shuai Ma, Zijun Wei, Feng Tian, Xiangmin Fan, Jianming Zhang, Xiaohui Shen,
Zhe Lin, Jin Huang, Radomír Měch, Dimitris Samaras, et al. 2019. SmartEye:
assisting instant photo taking via integrating user preference with deep view
proposal network. In Proceedings of the 2019 CHI conference on human factors in
computing systems. 1–12.

[49] Shuai Ma, Taichang Zhou, Fei Nie, and XiaojuanMa. 2022. Glancee: An Adaptable
System for Instructors to Grasp Student Learning Status in Synchronous Online
Classes. In CHI Conference on Human Factors in Computing Systems. 1–25.

[50] Stephen MacNeil, Andrew Tran, Arto Hellas, Joanne Kim, Sami Sarsa, Paul
Denny, Seth Bernstein, and Juho Leinonen. 2023. Experiences from using code
explanations generated by large language models in a web software development
e-book. In Proceedings of the 54th ACM Technical Symposium on Computer Science
Education V. 1. 931–937.

[51] Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne Hagan,
Yifat Ben-David Kolikant, Cary Laxer, Lynda Thomas, Ian Utting, and Tadeusz
Wilusz. 2001. A multi-national, multi-institutional study of assessment of pro-
gramming skills of first-year CS students. In Working group reports from ITiCSE
on Innovation and technology in computer science education. 125–180.

[52] Siné JP McDougall, Martin B Curry, and Oscar De Bruijn. 2001. The effects of
visual information on users’ mental models: An evaluation of Pathfinder analysis
as a measure of icon usability. International journal of cognitive ergonomics 5, 1
(2001), 59–84.

[53] Roy D Pea. 1987. Logo programming and problem solving. (1987).
[54] Roy D Pea. 2018. The social and technological dimensions of scaffolding and

related theoretical concepts for learning, education, and human activity. In
Scaffolding. Psychology Press, 423–451.

[55] Roy D Pea and D Midian Kurland. 1984. On the cognitive effects of learning
computer programming. New ideas in psychology 2, 2 (1984), 137–168.

[56] Janice L Pearce, Mario Nakazawa, and Scott Heggen. 2015. Improving problem
decomposition ability in CS1 through explicit guided inquiry-based instruction.
J. Comput. Sci. Coll 31, 2 (2015), 135–144.

[57] Tung Phung, José Cambronero, Sumit Gulwani, Tobias Kohn, Rupak Majumdar,
Adish Singla, and Gustavo Soares. 2023. Generating high-precision feedback
for programming syntax errors using large language models. arXiv preprint
arXiv:2302.04662 (2023).

[58] Chris Piech, Mehran Sahami, Jonathan Huang, and Leonidas Guibas. 2015. Au-
tonomously generating hints by inferring problem solving policies. In Proceedings
of the second (2015) acm conference on learning@ scale. 195–204.

[59] Nicole P Pitterson, Shane Brown, Jason Pascoe, and Kathleen Quardokus Fisher.
2016. Measuring cognitive engagement through interactive, constructive, active
and passive learning activities. In 2016 IEEE Frontiers in Education Conference
(FIE). IEEE, 1–6.

[60] James Prather, Brent N Reeves, Paul Denny, Brett A Becker, Juho Leinonen,
Andrew Luxton-Reilly, Garrett Powell, James Finnie-Ansley, and Eddie Antonio
Santos. 2023. “It’s Weird That it Knows What I Want”: Usability and Interactions
with Copilot for Novice Programmers. ACM Transactions on Computer-Human
Interaction 31, 1 (2023), 1–31.

[61] Yizhou Qian and James Lehman. 2017. Students’ misconceptions and other
difficulties in introductory programming: A literature review. ACM Transactions
on Computing Education (TOCE) 18, 1 (2017), 1–24.

[62] Kelly Rivers and Kenneth R Koedinger. 2017. Data-driven hint generation in
vast solution spaces: a self-improving python programming tutor. International
Journal of Artificial Intelligence in Education 27 (2017), 37–64.

[63] Lianne Roest, Hieke Keuning, and Johan Jeuring. 2024. Next-Step Hint Generation
for Introductory Programming Using Large Language Models. In Proceedings of
the 26th Australasian Computing Education Conference. 144–153.

[64] Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen. 2022. Automatic
generation of programming exercises and code explanations using large language
models. In Proceedings of the 2022 ACM Conference on International Computing
Education Research-Volume 1. 27–43.

[65] Jaromir Savelka, Arav Agarwal, Marshall An, Chris Bogart, and Majd Sakr. 2023.
Thrilled by your progress! large language models (gpt-4) no longer struggle to
pass assessments in higher education programming courses. In Proceedings of
the 2023 ACM Conference on International Computing Education Research-Volume
1. 78–92.

[66] Henk G Schmidt, Sofie MM Loyens, Tamara Van Gog, and Fred Paas. 2007.
Problem-based learning is compatible with human cognitive architecture: Com-
mentary on Kirschner, Sweller, and. Educational psychologist 42, 2 (2007), 91–97.

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Shuai Ma, et al.

[67] Brad Sheese, Mark Liffiton, Jaromir Savelka, and Paul Denny. 2024. Patterns of
student help-seeking when using a large language model-powered programming
assistant. In Proceedings of the 26th Australasian Computing Education Conference.
49–57.

[68] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. 2013. Automated
feedback generation for introductory programming assignments. In Proceed-
ings of the 34th ACM SIGPLAN conference on Programming language design and
implementation. 15–26.

[69] Steven S Skiena. 1998. The algorithm design manual. Vol. 2. Springer.
[70] Renske Smetsers-Weeda and Sjaak Smetsers. 2017. Problem solving and algorith-

mic development with flowcharts. In Proceedings of the 12th Workshop on Primary
and Secondary Computing Education. 25–34.

[71] Raja Sooriamurthi. 2009. Introducing abstraction and decomposition to novice
programmers. ACM SIGCSE Bulletin 41, 3 (2009), 196–200.

[72] Edward R Sykes. 2010. Design, Development and Evaluation of the Java Intelligent
Tutoring System. Technology, Instruction, Cognition & Learning 8, 1 (2010).

[73] Sigmund Tobias and Thomas M Duffy. 2009. Constructivist instruction. Success
or failure (2009).

[74] Chun-Yen Tsai. 2019. Improving students’ understanding of basic program-
ming concepts through visual programming language: The role of self-efficacy.
Computers in Human Behavior 95 (2019), 224–232.

[75] Janneke Van de Pol, Monique Volman, and Jos Beishuizen. 2010. Scaffolding in
teacher–student interaction: A decade of research. Educational psychology review
22 (2010), 271–296.

[76] Kurt VanLehn. 2011. The relative effectiveness of human tutoring, intelligent
tutoring systems, and other tutoring systems. Educational psychologist 46, 4
(2011), 197–221.

[77] Wengran Wang, Audrey Le Meur, Mahesh Bobbadi, Bita Akram, Tiffany Barnes,
Chris Martens, and Thomas Price. 2022. Exploring design choices to support
novices’ example use during creative open-ended programming. In Proceedings
of the 53rd ACM Technical Symposium on Computer Science Education-Volume 1.
619–625.

[78] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning
in large language models. Advances in neural information processing systems 35
(2022), 24824–24837.

[79] SusanWiedenbeck, Deborah Labelle, and Vennila NR Kain. 2004. Factors affecting
course outcomes in introductory programming.. In PPIG. 11.

[80] Jeannette M Wing. 2006. Computational thinking. Commun. ACM 49, 3 (2006),
33–35.

[81] David Wood, Jerome S Bruner, and Gail Ross. 1976. The role of tutoring in
problem solving. Journal of child psychology and psychiatry 17, 2 (1976), 89–100.

[82] Mustafa Yağcı. 2019. A valid and reliable tool for examining computational
thinking skills. Education and Information Technologies 24, 1 (2019), 929–951.

[83] Hatice Yildiz Durak. 2018. Digital story design activities used for teaching
programming effect on learning of programming concepts, programming self-
efficacy, and participation and analysis of student experiences. Journal of Com-
puter Assisted Learning 34, 6 (2018), 740–752.

[84] Xiaohua Zhou, Ching Sing Chai, Morris Siu-Yung Jong, and Xi Bei Xiong. 2021.
Does relatedness matter for online self-regulated learning to promote perceived
learning gains and satisfaction? The Asia-Pacific Education Researcher 30, 3 (2021),
205–215.

[85] Barry J Zimmerman. 2013. Theories of self-regulated learning and academic
achievement: An overview and analysis. Self-regulated learning and academic
achievement (2013), 1–36.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Scaffolding Programming Learning
	2.2 AI Coding Assistants and Application in Educational Contexts
	2.3 Computational Thinking and Problem Decomposition

	3 Formative Study
	3.1 Study Procedure
	3.2 Data Analysis and Results
	3.3 Design Goals

	4 Decomposition Box
	4.1 Overview
	4.2 Target Users and A System Walkthrough
	4.3 Stage 1: Solution Formation
	4.4 Stage 2: Solution Implementation
	4.5 Backend Design
	4.6 Implementation

	5 Technical Evaluation
	5.1 Dataset Creation
	5.2 Analysis Approach
	5.3 Results

	6 User Study
	6.1 Conditions
	6.2 Task and Materials
	6.3 Procedure
	6.4 Participants
	6.5 Measurements
	6.6 Data Analysis

	7 Results
	7.1 How does Decomposition Box help with algorithmic programming learning?
	7.2 How does Decomposition Box affect learners’ perceptions and user experience?
	7.3 How do learners interact with Decomposition Box and perceive the usefulness of different features?

	8 Discussion
	8.1 Chaining Learners' Thoughts with Visualized Structured UI Components
	8.2 Promoting Independent Thinking and Active Decomposition Learning
	8.3 Supporting Personalized Algorithmic Programming Learning
	8.4 Appropriate Usage of LLMs for Supporting Algorithmic Programming Learning
	8.5 Limitations and Future Work

	9 Conclusion
	Acknowledgments
	References

