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Robot Learning from Demonstration (RLfD) allows non-expert users to teach a robot new skills or tasks di-

rectly through demonstrations. Although modeled after human–human learning and teaching, existing RLfD

methods make robots act as passive observers without the feedback of their learning statuses in the demon-

stration gathering stage. To facilitate a more transparent teaching process, we propose two mechanisms of

Learning Engagement, Z2O-Mode and D2O-Mode, to dynamically adapt robots’ attentional and behavioral

engagement expressions to their actual learning status. Through an online user experiment with 48 partici-

pants, we find that, compared with two baselines, the two kinds of Learning Engagement can lead to users’

more accurate mental models of the robot’s learning progress, more positive perceptions of the robot, and bet-

ter teaching experience. Finally, we provide implications for leveraging engagement expression to facilitate

transparent human-AI (robot) communication based on our key findings.
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1 INTRODUCTION

As a common form of AI systems, robots play an increasingly important role in assisting humans
at work or in daily lives [20, 61, 71]. A traditional way to equip robots with the ability to perform
tasks is to program the required skills into them in advance. However, in this way, robots can only
execute fixed tasks and are not capable of learning new skills to adapt to users’ diverse needs in
dynamic and unstructured environments.Robot Learning fromDemonstration (RLfD) [25], is
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Fig. 1. The difference between a traditional RLfD pipeline and our improved pipeline. (a) In the traditional

RLfD process, a human teacher first gives a demonstration, then the robot learns to derive a policy, and finally

executes the skill/task to showcase its learning outcomes to the human. (b) With our proposed Learning En-

gagement, robots can engage in the demonstration gathering stage. Specifically, robots’ Learning Engagement

is driven by two parts: (1) humans’ demonstrations to adapt the engagement expression with the dynamic

of humans’ teaching; (2) robot’s inner algorithmic status to reflect its actual learning status.

thus proposed to address this challenge. RLfD provides a convenient, interactive method for non-
expert users to teach a robot new skills by intuitively demonstrating examples [5, 6, 25], which
has been successfully adopted in a variety of domains, such as daily task assistance [11, 119],
manufacturing [36, 85], healthcare [11, 184], and so on.

Generally, as shown in Figure 1(a), a standard RLfD process usually includes two main stages:
(i) a demonstration gathering stage, where the human instructor shows demonstrations of a
specific task, and (ii) a policy deriving stage, where the robot student learns a policy from the
human-demonstrated examples towards intended task outcomes [5]. These two stages in RLfD
are carried out iteratively, with more demonstrations being added in the next round if the robot’s
learning outcome is not satisfactory. However, two main limitations exist in such a pipeline. First,
it usually takes a long time for a robot to derive a rudimentary policy [5, 39]. Especially in the
early stage of exploration-based learning (e.g., Reinforcement Learning-based policy deriving), it
may be hard for the robot to show meaningful task outcomes, and thus the human teacher cannot
get enough valuable information to assess the learning progress of the robot [93]. Second, robots
usually remain static when human teachers give demonstrations [174], which makes it difficult
for humans to reflect upon their teaching and make necessary adjustments during the interaction.
Existing works have proposed methods to communicate what the robots have learned (or are
yet to learn) to human teachers, including but not limited to demonstrating the robot’s current
learned policy by showing trajectories [31, 91], providing verbal/nonverbal cues about robots’
learning status [21, 175], and visualizing where the robot succeeds and fails [158], and so on.
Nevertheless, these studies mainly present such robot learning feedback at the end of the policy
deriving stage and overlook the demonstration gathering stage, where instructors receive little
real-time response from the stationary robot student regarding what they are demonstrating [174].
It may impair teaching efficacy, decrease humans’ interest in participating in RLfD [25, 93], and
prevent human teachers from achieving their desired teaching objectives.
In comparison, human–human teaching and learning is a more reciprocal process between

the instructor and learner. Human instructors would often like to get instant feedback from
learners, which will help them perceive learners’ learning status and adjust the teaching content
accordingly [107, 191]. It has been shown that human learners usually convey their learning status
by natural and intuitive communicative acts, such as gaze, motions, gestures, facial expressions,
and so on [83, 105]. Based on these acts, instructors can appropriately update their beliefs about
learners’ knowledge and skills [13, 21]. Since RLfD is inherently a human–robot interaction
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process, we can adopt a similar idea to human learning into robot learning, where showing
robots’ learning status during the demonstration gathering stage in RLfD may help human
instructors assess the effects of their demonstrations on robots’ learning progress promptly. One
naive solution to this problem is directly presenting robots’ learning outcomes when the human
teacher performs the demonstration. However, there exist two problems. First, as mentioned
earlier, in the early iterations of the demonstration gathering stage [100], the learning outcome
is usually unshaped. Second, when displaying learning outcomes (based on past training rounds),
robots’ behaviors are independent of what the teacher is currently demonstrating. If performed
simultaneously, robots’ actions may seem inconsistent with and/or irrelevant to the instructor’s
teaching dynamics in the ongoing round, leading to misunderstanding and confusion [98].

To address these issues, we propose a novel concept, Learning Engagement, for robot students
to communicate their learning status to human teachers by showing engagement with teachers’
live example(s) in the demonstration gathering stage. Engagement can be defined as the participa-
tion and involvement in an interaction, including emotional engagement, behavioral engagement,
and cognitive engagement [165]. Student engagement is a typical signal for instructors to per-
ceive the learner’s inner status [191]. We thus propose to have robots convey their engagement
in the demonstration process as a kind of feedback on their learning status, similar to human
teaching and learning. The design of proper robot learning engagement expression should satisfy
the following design requirements. (R1) It needs to be closely coupled with human instructors’
real-time demonstration behaviors and adaptive to the dynamics of humans’ movements to en-
hance a real-time interactive experience because, in human teaching and learning, students are
expected to engage in and adapt to the teaching dynamic [51]. (R2) It should be able to reflect the
actual learning status of the robot since human teachers tend to deem students’—humans’ [191] or
robots’ [105]—engagement as an effective lens to inspect and update their mental model of learn-
ers’ learning progress. (R3) It should be represented in a human-understandable manner instead
of simply displaying the updates of algorithmic parameters in robots’ policy space to instructors
as the RLfD users are mainly non-experts [5].
As shown in Figure 1(b), our proposed robot Learning Engagement expression is controlled by

two components: humans’ ongoing demonstrations so that the robot’s engagement behaviors can
correspond to the humans’ teaching dynamic (R1), and robots’ current learning status to help hu-
man teachers perceive the robot’s learning progress accurately (R2). To achieve R3, we design
two kinds of engagement cues. One is attentional engagement named Gaze Following, and the
other is behavioral engagement called Rhythm Synchrony. To connect with human demonstration
(R1), in Gaze Following, robots track humans’ key movements during a demonstration with their
eye gaze to suggest their focus of attention. In Rhythm Synchrony, robots’ limb movements fol-
low the rhythm of humans’ demonstrated actions to show a sense of involvement. We verify the
communication effectiveness of these two engagement cues through two pilot studies. To control
robots’ expressed level of engagement according to actual learning status (R2), we incorporate
the Learning Status Indicator from the backend learning algorithm as a regulator and design two
types of Learning Engagement dynamics, i.e., From-Zero-to-One Engagement mode (Z2O-Mode)
and From-Disorderly-to-Orderly Engagement mode (D2O-Mode), based on the common phenom-
ena and educational theories in human learning [25, 146, 185]. Specifically, in Z2O-Mode, with the
progress of robot learning status, robot engagement will gradually change from zero intensity to
full intensity. By contrast, in D2O-Mode, as the robot learning status improves, robot engagement
will change from a chaotic state (full intensity filled with random noise) to an orderly state (full
intensity with no noise). With these two designs, we explore the following research questions:
RQ1. How will the proposed Learning Engagement affect users’ mental model of robots’ learning

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 5, Article 70. Publication date: September 2023.



70:4 S. Ma et al.

progress? and RQ2. How will the proposed Learning Engagement affect users’ overall perceptions
of the robot and the RLfD process?
To answer the two research questions, we first developed an online simulated RLfD platform on

which users can teach skills via webcam to virtual Pepper robots [121]. Robots were equipped with
Z2O-Mode and D2O-Mode and two baseline modes for comparison, namely (1) Full-Mode, where
robots always showed the same highly active engagement, regardless of their real learning statuses,
(2) None-Mode, where robots always remained motionless in humans’ teaching process. We then
conducted a controlled, within-subjects online user study with 48 participants to investigate users’
perceptions and experiences when teaching robots in different engagement modes. In the study,
participants were asked to teach four given daily skills to four robots. Each robot was deployed in
one engagement mode, and each skill-teaching task contained five teaching rounds. We collected
participants’ perceptions via in-task and post-task questionnaires and interviewed them after the
study. As the user study was conducted online due to the pandemic and some experimental factors,
we took several measures to enhance participants’ sense of participation and reality.

For RQ1, results suggested that compared with the two baselines, the proposed Z2O-Mode and
D2O-Mode had significantly different effects on users’ perceptions of robot engagement, robot
learning status, and the expectations of robot learning outcomes. Also, we verified that partici-
pants’ perceived robot engagement had a significant positive correlation with the perceived robot
learning status. Moreover, we found that Learning Engagement helped users perceive the actual
learning status of the robot significantly more accurately compared with the two baselines. For
RQ2, we found that with the proposed Learning Engagement, users had significantly better per-
ceptions of the acceptability of robot behavior, the robot’s intelligence, and the robot’s potential for
further improvement. And the analysis of participants’ button-clicking logs revealed that partici-
pants’ adjustment of demonstration and re-watching behaviors were significantly different when
teaching robots in different engagement modes. Last but not least, participants reported being
significantly less tired when teaching robots and significantly more willing to continue to teach
the robot in the Z2O-Mode and D2O-Mode than in the baseline modes. We derive possible expla-
nations of these findings from a qualitative analysis of participants’ verbal feedback during the
teaching process and post-study semi-structured interviews.
To the best of our knowledge, this work is a first step to enhancing the transparency of robot

learning progress by incorporating robots’ learning status into learning engagement expression.
The key contributions of this work include: (1) We proposed Learning Engagement to facilitate
the transparency of robots’ learning status to non-expert users. Specifically, we proposed two
Leaning Engagement modes, Z2O-Mode and D2O-Mode by incorporating robots’ actual learning
status into the proposed two kinds of engagement design, Gaze Gollowing and Rhythm Synchrony;
(2) We conducted a controlled user study with 48 participants to investigate the effects of different
engagement expressions on users’ perceptions from multiple perspectives. Based on our key
findings, we provided practical implications for the engagement design of robots and broader AI
systems.

1.1 Contribution to HCI Community

Despite the increasing adoption of AI techniques in everyday applications [41, 196], it is challeng-
ing for users to build an accuratemental model of the often black-boxAI systems [41, 103, 139]. HCI
researchers have been putting efforts into designing more transparent communication approaches
between AI and humans, such as making model behavior more intelligible through explanations
(a.k.a. explainable AI [40, 54, 103, 188]) and informing users of the inner working status of the AI
system (e.g., capabilities, confidence, uncertainties, trustworthiness, etc. [9, 10, 48, 128]) in easily
understandable ways [48, 150]. Our work carries on the HCI community’s exploration of using
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human-centric design methods to help users interpret the opaque AI system [9, 40]. Specifically,
we investigate the possibility of translating the inner status of an AI agent (the robot’s learning sta-
tus in this case) into its engagement expression based on HCI design theories, such as the “mental
model” of users [127], “gulf of evaluation” [125], and “computers are social actors (CASA)” [123].
Our results confirm that lay users can directly understand the conveyed information by applying
their established communication strategies from human–human interaction [162].
In brief, in this article, we take a modest step forward in making the inner status of AI sys-

tems transparent for non-expert users via engagement expression. Our work has showcased that
through the computational design of adaptive engagement expression (e.g., the proposed Learning
Engagement), users can well grasp the internal status of an AI system (progress of the learning al-
gorithm of a robot in this work) through engagement communication. By taking teaching robots as
an example, we hope our proposed methods will provide insights into designing more transparent
and interpretable AI systems for the broader HCI community.

2 RELATEDWORK

2.1 Robot Learning from Demonstration (RLfD)

RLfD, also called “imitation learning” or “programming by demonstration” [154], is a paradigm for
non-expert users to teach a robot new tasks or skills by simply providing (live) examples [5]. RLfD
research community has proliferated over the past decades, with a wide range of approaches devel-
oped for gathering samples from humans, modeling the tasks, and deriving the policies [25]. RLfD
methods have been widely and successfully adopted in various real-world applications, such as
manufacturing [36, 85], assistive and healthcare robotics [11, 95], and so on. There are three kinds
of interfaces for humans to provide demonstrations to robots in RLfD, including kinesthetic, tele-
operation, and passive observation [142]. Similar to human—human teaching face-to-face, passive
robot observation enables users to naturally teach skills using their own body, which is partic-
ularly easy for users to perform without operator training and has been successfully applied to
various tasks [75]. In this article, we also take the commonly used passive observation approach
as the demonstration method [28, 137].

Existing research on RLfDmainly focused on two aspects: technical development and interactive
experience. The former concerns algorithms and techniques for deriving robot policy to fulfill dif-
ferent kinds of tasks, such as using supervised learning to map states to actions [26, 152], utilizing
demonstrations for reward shaping [124, 190] in Reinforcement-Learning-based RLfD [15, 68], and
recovering rewards from collected demonstrations via Inverse Reinforcement Learning [1, 31], to
name a few. As for the interactive experience, prior works primarily look into how to make a robot
communicate with humans to collect demonstrations more efficiently, including but not limited to
designing robots’ feedback to convey information about what they want from humans by verbal
and/or nonverbal cues [21, 175], letting robots ask questions during demonstration [17], showing
robots’ informative feedback to increase humans’ engagement [99], and visualizing where a robot
learner succeeds or fails [158] to human instructors. Taking the two aspects together, Senft et al.
proposed SPARC [159, 160, 192], a framework allowing humans to teach robots to interact socially
in the real world by which the robot can progressively learn appropriate autonomous behavior
from in-situ human demonstrations and guidance.
However, these works mainly study the pre- or post-demonstration gathering stages in an RLfD

process and largely overlook how the robot’s behavior could be leveraged to improve RLfD effec-
tiveness and user experience in the demonstration stage. More specifically, existing studies mostly
situate in scenarios where (i) the human has finished showing demonstrations and the robot is run-
ning its learning algorithm with the captured demonstration as input, or (ii) the robot performs
the task based on a trained policy while communicating some information such as its capability
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or uncertainty to elicit the next round of human instruction [91, 99]. Nevertheless, in the demon-
stration gathering stage, the robot simply remains stationary, waiting for the completion of the
demonstration. We argue that similar to reciprocity in human learning [176, 186], the demonstra-
tion stage can be turned into a two-way interaction with real-time feedback from robot learners
to human teachers. Hence, in this article, we aim to design appropriate mechanisms to make robot
students engage in the teaching process. To the best of our knowledge, the most relevant work
to ours is [174], where the authors explore how different kinds of robot engagement cues may
affect users’ perceptions. However, in their work, the robot is not equipped with an actual learn-
ing algorithm; thus, the engagement design cannot adapt to the robot’s actual learning status. By
contrast, in this article, we deploy a policy-deriving algorithm on the robot and design Learning En-
gagement methods to dynamically integrate the robot’s actual learning status with its engagement
expression and then investigate the effects on users’ perceptions from multiple perspectives.

2.2 Users’ Mental Model of Intelligent Systems and the Need for Transparency

Norman’s framework on human-centered design [126, 127] explains the dynamics between user
mental modal and the actual status of a system/artifact. Simply speaking, when users interact with
a system, they build internal conceptualizations of the systems that allow them to explain and
predict the system’s workings [47]. Norman [126] postulates that, “Good conceptual models are
the key to understandable, enjoyable products: good communication is the key to good conceptual
models”. This idea is fundamental to the transparency demand of AI systems: To make optimal use
of AI systems, it is critical that users maintain an up-to-date mental model of these systems. It has
been shown that improved mental models contribute positively to user satisfaction and perceived
control [87] as well as to overall trust in an intelligent system [106] and to better utilization of its
decisions and recommendations [30, 155].

Communicating what status a system is in or explaining how the system works are effective
transparency mechanisms to improve users’ mental models of AI systems [87, 88]. In contrast,
users are more likely to build flawed mental models when encountering an opaque system [127].
One way to enhance transparency in intelligent systems is the research of explainable AI (XAI)
[53], which focuses on explaining and justifying the outcomes of AI-driven decisions or recom-
mendations [82, 130]. Previous research has examined different types of explanation [114, 182],
generating text or visualizations to offer local or global explanations of the AI models [115]. An-
other commonly studied approach to enhancing the transparency of intelligent systems is com-
municating the inner working status (e.g., uncertainty, confidence, and capability) of AI systems
to users [41] through various designs such as icons [42], textual annotations [12], plots [147],
and image/sentence highlighting [181]. One of the most commonly communicated information
is the uncertainty of AI systems. Some prior works develop simplified, qualitative descriptions of
uncertainty. For example, Ancker et al. [3] and Gkatzia et al. [49] use phrases like “very likely”,
“likely”, and “unlikely” to describe how probable an outcome is. And some research has demon-
strated more expressive representations of uncertainty, such as visualization, for non-expert users
to understand. Jung et al. compare a gradient plot versus a point estimate to communicate the re-
maining battery level range for an electric vehicle [73], which reduces driver anxiety in a driving
task. Hohman et al. deploy a “regions-of-error” technique showing themodel uncertainty of predic-
tions for ML experts [62]. These text or visualization-based approaches are effective for displaying
the uncertainty of AI systems in some cases. However, they are not related to users’ dynamic in-
teraction behaviors and are inappropriate when a user focuses on inputting data into the system
(e.g., demonstrating a skill to the robot). Thus, we propose to communicate the internal status of
the AI system by expressing its engagement when users interact with the AI to fit users’ dynamic
interaction behaviors.
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Note that “mental model” has different definitions in different interaction scenarios [48]. In this
article, we define the mental model of users as their perceived robots’ learning status during the
teaching process. And in our work, we take the robot-based AI system as an example and focus
on communicating robots’ internal status (i.e., its learning status—the progress of the learning
algorithm) by expressing adaptive engagement during users’ input process.

2.3 Transparency Design for Robot Internal Status

Researchers have proposed many feasible methods to express robots’ internal status to human
partners, such as through motions and trajectories [65, 91, 133], language and voice [17, 19, 80,
141, 156, 169], visual display [46, 66, 99, 136, 179], and social cues [21, 105, 131, 195].

First, robots’ motions and trajectories have been widely used to externalize their states. For ex-
ample, [65] proposed to convey uncertainty in a pick-and-place robot by extending its waiting time
and reducing its moving speed. Reference [133] exploited the speeds of motion to communicate
a learning agent’s uncertainties in taking action. Besides motion, robots can directly use natural
language and voice to announce their status in human–robot tasks, which is shown to improve
team performance [156, 169]. For example, [141] enabled robots to provide easy-to-understand
feedback in natural language to users on tasks that cannot be achieved. Reference [19] equipped
social robots with the ability to express their curiosity verbally. Reference [80] manipulated the
tone of robots’ voices to inform their confidence in suggestions. The visual display is another effec-
tive alternative to express robots’ internal states. For example, visualization can illustrate changes
in agents’ uncertainty [99], and can summarize the results of scene detection and command recog-
nition [136]. Besides, the visual display on robots’ bodies has also been exploited, e.g., expressing
robot emotion by changing the body’s color luminosity [179] or skin texture [66]. Furthermore,
programmable lights on robots can help express their intent [46]. Moreover, animation and visual
metaphors can also serve as status cues. For example, [37] used non-semantic and semantic icons to
suggest the confidence level of a robot. In addition, researchers proposed to integrate multi-modal
signals together to convey robots’ states, such as robots’ emotions by combining multi-modalities,
such as color, sound, vibration, and light [167, 168]. In humanoid robots, social cues, e.g., facial
expressions [131], gaze [105], gestures [21], and so on, are widely adopted to foster mutual un-
derstanding with human partners. For example, [21] had a Simon robot apply nonverbal gestures
to query a human teacher about areas of uncertainty in the underlying model. Reference [195]
proposed to express a robot’s confidence level via body orientation; if the robot is less confident, it
will slowly turn to the user. Reference [69] designed a mechanism to control the timing of a robot
nodding to signal a humanoid robot’s agreement, interest, and confidence when talking.
Existing research on robot confidence or uncertainty expression shares a similar idea with our

work. However, we focus on the RLfD scenario, especially exploring how to show the internal
learning status of a robot during the demonstration gathering period, when the human instructor
expects to get feedback on the demonstration in real-time.

2.4 Engagement and Robot Engagement in Learning

Broadly defined, engagement is the process of initiating, maintaining, and terminating the
interaction between humans and other interactive parties, which can be humans, computers,
and robots [164]. More specifically, in HCI, engagement can be categorized into three main
types: emotional engagement, behavioral engagement, and cognitive engagement (including
attentional engagement) [108, 165]. Each type of engagement represents a different aspect of
human participation and involvement in an interaction. Emotional engagement refers to humans’
affective reactions towards the interaction, such as interest, anger, excitement, frustration, and
boredom [94]. Behavioral engagement refers to humans’ physical behaviors when participating
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in the interactive process [33]. Cognitive engagement refers to humans’ psychological devotion
to the interaction [102] such as thinking, reflection, attention allocation and redistribution, and
so on [22]. When it comes to human–robot interaction, people have the tendency to regard the
robot as another human partner, especially if it has a human-like appearance [116], and thus they
may seek engagement cues from the robot as in human–human interaction. Inspired by human
engagement expression, researchers explore the use of similar social signals such as eye gaze [2],
and body posture [178] to indicate robot engagement.

In the context of learning, robot engagement can also be represented through the above three as-
pects: cognition, behavior, and emotion [132, 165]. (i) Among all the cognitive states, the allocation
of attention is one of the most important cognitive resources [132]. Thus we focus on the robot’s
attention expression. Based on human–human teaching and learning, attentional engagement is
highly related to the learning process [146, 185]. Focal attention implies a positive state, while
distraction such as divided attention [74] and mind wandering [111] are often associated with neg-
ative states. In HRI, a robot can signal its attention via different cues, e.g., gaze [2, 89, 105], head
orientation [105, 175], and body postures [178]. (ii) Behavioral engagement is usually represented
by task-related activities, e.g., task attempts, efforts, active feedback, and so on [174]. Among
all possible behavioral engagement cue candidates, mimicry and behavioral synchronization are
two common ways to express one’s engagement unconsciously, which refers to “non-conscious
mimicry of the postures, mannerisms, facial expressions, and other behaviors of one’s interac-
tion partners” [23]. In both human–human and human–robot interaction, the imitation behavior
can increase the likelihood of understanding [24], interpersonal coordination [25], and emotional
contagion [56]. (iii) Emotional engagement is associated with the affective status in the learning
process, such as boredom, anxiety, confusion, and so on. Despite its importance, emotional engage-
ment is hard to generalize to most existing RLfD scenarios since the robotic systems lack the full
ability to express emotions [174]. As a result, in this article, we focus on communicating robots’
attentional and behavioral engagement in the RLfD scenario.
In summary, although existing works have researched the expression of general robot engage-

ment, few have focused on the RLfD interaction scenarios. To fill this gap, in this article, we pro-
pose a novel method to integrate the learning status of the robot with the expressed engagement
to adapt to the dynamic and reciprocal RLfD teaching process. It is worth mentioning that beyond
the designed expression of engagement for the robot-shaped AI system, our proposed method
can be adapted to other kinds of AI systems, such as GUI-based intelligent systems, by showing
engagement through various forms, e.g., text [162], icons [55], colors [58, 163], cartoon and ani-
mations [113, 194], and so on. Thus, engagement expression could be applicable in a wide range
of human-AI interaction scenarios.

3 DESIGN OF LEARNING ENGAGEMENT

In this section, we first briefly introduce the representation of human body poses which forms
the basis of robot learning from physical demonstrations by humans. Then, we design two forms
of engagement cues to communicate robots’ learning status: one signals attentional engagement
through Gaze Following, and the other indicates behavioral engagement via Rhythm Synchrony.
Finally, we propose two Learning Engagement modes, the Z2O-Mode and the D2O-Mode, com-
bining the robot’s engagement expression with the actual progress of the underlying learning
algorithm.

3.1 Representation of Human Body Pose

Demonstrations in RLfD, i.e., the expert’s body poses [142], are usually represented in a tree-like
structure, with pose joints as its nodes and pose bones as its edges. As shown in Figure 2, the body
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Fig. 2. Two representation forms of human body poses [174]. (a) The position form: All joints are described

by their positions in a single sensor reference frame; (b) The transformation form: Each joint has its own

reference frame, and the skeleton defines parent–child structures and translations between frames; except

that the root joint is referred in the sensor reference frame.

poses can be denoted in two ways: global position-based representation or local transformation-
based representation.
Position-based representation describes human body pose in a single global sensor reference

frame, as shown in Figure 2(a). Specifically, the pose skeleton is denoted as [J (1), J (2), . . . , J (n)],
where J (i) ∈ R3 is the position vector of the ith human joint in the skeleton, and n is the total
number of joints. This representation allows us to get the global position of each joint on which the
proposed attentional engagement cue Gaze Following and the behavioral engagement cue Rhythm
Synchrony are based.

Transformation-based representation describes human body pose with a series of frames of
Reference [173], as shown in Figure 2(b). It sets one of the joints (often the hip joint) in the skeleton
as the root node, and this node is described in the sensor reference frame. The other joints have
their own (right-handed) reference frames, and the links in the tree-like skeleton define the parent–
child relationship between two connected joints, e.g., the left elbow joint is a child of the left
shoulder joint. The pose of a non-root joint is then described by a translation (body-dependent, i.e.,
the bone length) and a rotation (body-independent, i.e., joint movement) in its parental reference
frame. In this way, a human body movement can be denoted as [T1,T2,T3, . . . ,Tn], whereTi is the
translation and rotation vector of the ith joint in the skeleton. This representation helps us to get
the target orientation of the demonstrator’s poses, which is used for the reward function and state
representation in the learning algorithm (detailed in Section 3.4).

3.2 Attentional Engagement Cue: Gaze Following

3.2.1 Design. In the context of learning, since the allocation of attention is an essential cog-
nitive engagement [132, 165], we employ attentional signals as a cue to communicate robot en-
gagement in RLfD. One of the most effective indicators of attention is eye gaze which is a key
component of human cognition and guides attention to areas with high information value. Gaze
can signal a willingness to engage in the interaction and accelerates learning [112, 178]. Also, gaze
is instrumental to (visually guided) imitative learning, and its pattern helps discern whether a
learner is focusing on learning goals and instructors’ intentions [7, 112]. In human–robot interac-
tion, robots’ gaze following is recognized as an effectivemeans to signal engagement in social learn-
ing [2, 105, 153]. In LfD settings, human instructors’ goals and intentions are presented through
their bodily actions, and thus the most informatively salient areas of their body pose should be the
target of gaze following.
We propose the expression of attentional engagement for robots based on the cognitive theories

of human attention. Generally speaking, a generation process of human visual attention involves
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Fig. 3. An illustration of the Gaze Following method. (a) Finding the attention point by comparing the dis-

tance between the current position and the position distribution of each target joint. (b) Transformation of

attention point Pa from the sensor reference frame TS to the robot head reference frame TR based on the

transformation TRS [174].

two stages [72]: First, attention is distributed uniformly over the visual scene of interest; then, it
is concentrated to a specific area for gaining information [43]. Therefore, the first challenge in
designing the attentional engagement cue is to determine which part(s) of human movement the
robot student should gaze at. A simple but effective way to measure the importance of each joint is
by its extent of position change after a sub-movement. First, we use the aforementioned position-
based representation to get the position of each joint in the global reference frame of a human
body skeleton and utilize joint positions observed in the past several poses to model the temporal
position distribution Pj of each joint j. Then, we compare the distance between each joint’s current
and previous position distributions. A larger distance suggests a bigger difference between the two
observations, and thus it means that the corresponding joint contains more information induced
by the current motion.
In the current implementation, we measure the importance of joint points by the absolute mag-

nitude of the position change. This works well in the skill-learning tasks in this article. However,
in some cases, slight movements may deserve more attention than big ones. We can deal with this
situation by using the relative degree of position change to measure the joint importance. In this
way, even for a slight movement, as long as the joint has a relatively large change compared to its
past movement, it is reasonable to consider the movement worthy of attention.
Figure 3(a) illustrates how to get the attention point. During a teaching process, when the hu-

man’s body moves, the current position of each target joint is tracked, and the distance between
the current position and the mean of the last n positions’ distribution is calculated via Euclidean
distance. The joint with the largest derivation from the past distribution (joints’ past positions)
will be regarded as the attention point Pa . Note that the attention point Pa is generated in the sen-
sor reference frame (actually, now it is PSa ) and needs to be further aligned to the robot’s reference
frame. We take the same strategy as in [174] to transform PSa by left-multiplying the transforma-
tionTRS , i.e., P

R
a = TRSP

S
a , as illustrated in Figure 3(b), whereTRS refers to transformation from the

sensor reference frame TS to robot head reference frame TR . Then, we can control the orientation
of the robot’s head to direct to PRa .
To determine the number n of the last positions to track, we consider both sensitivity and sta-

bility. If too few past joint positions are taken into consideration, the method will be unstable due
to noise from the Mocap demonstration data. On the contrary, if too many past joint positions are
considered, the attention point Pa will react too slowly, which can lead to important actions being
missed. To strike a balance between stability and sensitivity, the number of joint positions to be
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tracked is empirically set to 10, which works well in the selected skills in this article. For other
skills/tasks, we suggest that the number of joints to track should be determined mainly based on
the frequency of skills. If the changes of skill actions are frequent, this number should be appropri-
ately reduced because it is easy to capture changes at this time, and a smaller timestep is beneficial
to capture the latest changes; and when the movement changes of the skill are relatively slow,
this number should be appropriately increased. Therefore, the choice of this parameter can be set
adaptively, roughly inversely proportional to the frequency. In addition, we set the refresh rate
to 10 frames, which means that we update the attention point every 10 frames (choose the most
frequently occurring attention point).

3.2.2 Verification. We did a pilot study to investigate whether the designed Gaze Following
is appropriate and effective to express robots’ attentional engagement in terms of four aspects:
(1) perceivedmovement smoothness, (2) perceivedmovement stability, (3) perceived gaze accuracy,
and (4) perceived engagement expression. We deployed a Pepper robot and a human-skeleton
avatar in a simulation environment (detailed in Section 4) to showcase the RLfD process and used
a basketball-shooting motion as the target skill to learn. We used the motion capture data from
the CMU Mocap dataset1 to drive the human avatar to play and shoot the ball. During the human
avatar’s demonstration, the robot was driven by the Gaze Following method to direct its gaze on
the human avatar in real time. We recorded the human–robot interaction process from a third-
person view (the illustration can be found in the online Appendix2) and showed the videos to 10
participants (5 Female; ageM = 24.9, SD = 2.1) recruited from a local university. After participants
watched the videos, we asked whether the robot’s eye gaze was smooth and following the human’s
movement (“3 - Yes”, “2 - Hard to say”, and “1 - No”), respectively. We also invited them to rate their
perceived level of robot engagement in the learning process on a 7-point Likert scale (1: Extremely
disengaged, 7: Extremely engaged)). A total of 9 out of 10 participants considered the robot’s gaze
movement to be smooth (one participant found it hard to say), and all of them positively confirmed
the gaze-following accuracy. The average engagement level rating was 6.5 (SD = 0.7). These results
suggested that the proposed Gaze Following cue was appropriate and effective in expressing the
robot’s attentional engagement.

3.3 Behavioral Engagement Cue: Rhythm Synchrony

In human–human interaction, behavioral engagement is often conveyed by one’s physical partic-
ipation [108]. Among all the social behaviors in an interaction, mimicry and behavioral synchro-
nization are two common ways to express one’s engagement [140]. Mimicry is typically defined
as spontaneous, immediate imitation of gestures, postures, and the dynamics of movements of the
other person [90, 92], while behavioral synchronization is regarded as the mutual alignment of
interaction partners’ behavior on a larger time-scale [140]. There has been a lot of evidence in
social science and psychological science showing that mimicry and synchronization can promote
rapport [23], trust [109], altruistic behavior and liking between interacting partners [183], and
can be interpreted as engagement [98]. Mimicry can be implemented without actual policy learn-
ing algorithms, as demonstrated by the Approximate Imitation in [174], which allows the robot
to directly reproduce to the best extent possible pose of each human joint on the corresponding
robot joints. However, it may not be appropriate in our teaching scene because if it is visually too
similar to the learning target, human instructors may misinterpret such engagement cues as the
robot’s actual learning outcomes [174, 178], especially in the motion learning task. Therefore, in

1http://mocap.cs.cmu.edu.
2https://userstudy.link/OnlineAppendix/appendices.pdf.
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this article, we propose communicating robot learners’ behavioral engagement through behavioral
synchronization.

3.3.1 Design. Rhythm synchrony is essential in behavioral synchronization [35]. Although im-
plicit, it is a critical signal in human–human interaction [122, 149]. Also, there is evidence showing
that robots performing synchronization behavior, such as following human movement’s rhythm,
can lead to a pleasant sense of interaction with users [4, 120]. Inspired by these findings, we design
Rhythm Synchrony as a kind of robot behavioral engagement cue in RLfD. The general idea is to
let the robot make some slight bodily motions rhythmically according to the rhythm of human ac-
tions. For example, limb movement as simple as tapping and swinging is commonly used to show
rhythm [60, 120]. Considering the humanoid robot Pepper, for instance, we can leverage its upper
limbs, including its hand, elbow, and shoulder, to implement such a rhythm.
To leverage rhythm for synchronization of the human demonstration, the first problem is to

obtain the rhythm pattern in a human demonstration. Here, we introduce the concept of period
in our tasks. We define the period as an interval in which one joint moves from a relatively ex-
treme position to another in an action sequence. The duration of each period can be different, and
the end position of a joint motion trajectory in a period is not necessarily the same as the start
position [120]. For example, drawing a square with a hand in the air can be regarded as contain-
ing four periods, each corresponding to one stroke. We can show that a robot is following the
rhythm of the human demonstration by making the robot act in the same period as the human
demonstration action. Without loss of generality, to get the periods in a movement, we need to
find temporal segmentation points which feature distinguishable events such as local extrema of
the movement with vanishing velocity as described in [84, 120]. And a period can be delimited by
two segmentation points. More specifically, to get the periods of a demonstration movement, we
need to go through two steps. (i) Step 1, get the velocity of target joints at each timestep. As only
upper-limb movement skills are taught in our tasks, we can focus on the two arms and then get
the average velocity of joints in these two parts. The velocity value Velt of one joint at a given

time t can be approximated by finite-difference Velt ≈
|Post+Δt−Post |

Δt , where Post+Δt and Post are
the joint positions at time t + Δt and t in the sensor reference frame, respectively. (ii) Step 2, get
segmentation points based on velocity. After observing the demonstration over a series of move-
ment steps, we can get a sequence of corresponding velocity values (which can form a velocity
curve) of a given body part. Then, we adopt a filter to reduce noise interference. In this article, we
use Savitzky–Golay filter [138] with the advantage that it can retain the change information of
a signal effectively while the filtering is smooth. Then, on the velocity curves, we can obtain the
temporal segmentation points of the corresponding body part, with the criteria that the average
joint velocity is close to zero and lasts for more than five timesteps (frames), a noticeable duration
in our settings. Once we get the segmentation points, we treat the intervals between each pair
of consecutive segmentation points as periods. After getting the periods of the left arm and right
arm of the human demonstrator, we can synchronize the rhythm of the left and right arms of the
robot accordingly. Note that there is a cold start problem with this approach, and we need the
human instructor to perform the demonstration once in advance so that the robot can leverage
this practice round to get the initial rhythm of the movement and adjust it in the actual teaching
rounds. Such a design is applicable in RLfD tasks, especially in multi-round skill teaching tasks, as
the demonstration is easy to perform and two consecutive rounds of demonstrations are usually
very similar in pace.

The second problem is to show robots’ rhythmic behavior. Following some common human
behaviors in displaying synchronization in real-world motion skill learning [50, 171], we iden-
tify two ways to express a robot’s rhythmic movement in synchronization with human actions:
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Fig. 4. Three candidates of rhythm synchrony behavior. (a) The robot raises and lowers its forearms. (b) The

robot clenches its fists and opens its hands. (c) The robot raises and lowers its forearms while clenching its

fists and opening its hands.

Fig. 5. An illustration of Rhythm Synchrony. The first row shows seven uniformly sampled positions of the

robot’s upper limbmovement (themovement of the upper body is a continuous process, and we choose seven

moments as examples). The second row shows a curve of the velocity values of a demonstrator’s movement,

where the five blue points indicate the segmentation points. Two consecutive segmentation points determine

a period. From each segmentation point to the next, we manipulate the robot’s upper limb movement from

one extreme state to another, e.g., from 1 to 7 or from 7 to 1.

raising/lowering forearm(s) and clenching fist/opening hand(s). Note that the specific choice and
the moving range of the robot joint(s) involved are not fixed and should be determined by the
particular tasks for the robot to learn and by the specific physical form factors of the robot.
We take the rhythmic movement design of the robot’s elbow joint as an example to introduce

the detailed design of Rhythm Synchrony. First, we drive the robot’s elbow by changing the Euler
angle θroll of the joint, which will produce the visual effect of raising and lowering the forearm.
Through empirical testing, we set the reasonablemovement range of the elbow’s θroll to be 0.2–0.9
(the two extreme joint states are shown in Figure 4(a)). Then, we can map the obtained periods
into the movement range of the elbow joint, by adjusting the value of its θroll at a uniform speed
from one end to the other end in one period, and back in the next period (illustrated in Figure 5).
Namely, the rhythm of the robot is represented by periodic raising-lowering of its elbow joint, and
the movement is synchronized with the speed and timing of the human demonstration. Similarly,
we design another expression of rhythmic movement through the opening-hand and clenching-
fist actions of the robot (shown in Figure 4(b)). In addition, we combine the two together as a third
way to convey synchronization—Rhythm with fist&elbow (shown in Figure 4(c)).

As suggested by [174], setting one second of delay for the robot’s movement is more acceptable
to users. If the robot generates the movement in a very responsive manner, users are likely to feel
that it is acting on itself rather than following the demonstrator’s movement. Consequently, we
make the robot 1s slower than the human’s movement in Rhythm Synchrony. However, since the
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Fig. 6. Results of the pilot study (the error bar represents the standard error).

human–human gaze interaction is adjusted in real-time, we do not set any delay for the robot in
Gaze Following.

3.3.2 Verification. To get the most appropriate behavioral engagement expression for RLfD,
we conducted a within-subjects pilot study to compare the following four behavioral engagement
expressions: (1) Approximate imitation (implemented following [174]), (2) Rhythm with elbow,
(3) Rhythm with fist, and (4) Rhythm with fist and elbow. We invited 12 participants (5 Female)
from a local university, with an average age of 24.6 (SD = 1.9). In the same virtual environment
used in the previous pilot study for Gaze Following testing, we let the human avatar teach the
Pepper robot the swimming action and had the robot express its behavioral engagement through
the above four forms in the learning process. The participants watched the video recordings of the
robot’s four forms of behavioral engagement cues in random order and answered 5-point Likert
scale questions (1: Strongly disagree, 5: Strongly agree) after each video. The questions were
regarding whether behavioral engagement (1) is easy to be confused with the robot’s learning
outcome, (2) can make people feel that the robot is engaged in learning, (3) is easy to observe
without too much attentional load, and (4) makes sense (looks natural and reasonable).

The results analyzed by Friedman test with Wilcoxon post-hoc are shown in Figure 6. We find
that the Approximate imitation is significantly more likely to mislead users to think that the robot
was showing its learning outcome (with allp < 0.001 compared with three rhythm synchrony cues),
even though it also stimulates a strong sense of high engagement. Among the synchronization-
based cues, the combined elbow and fist rhythm cue is considered the most appropriate and easier
to observe among all. Based on these pilot study findings, we choose Rhythm with fist and elbow
as our final behavioral engagement expression, Rhythm Synchrony.

3.4 Learning Engagement

In this section, we first introduce the learning algorithm used in this article, and then we pro-
pose two kinds of Learning Engagement that incorporate the learning status of the robot into the
engagement expression.

3.4.1 Learning Algorithm and Learning Status Indicator. RLfD can be formulated as an infinite-
horizon Markov Decision process (MDP) problem with a finite state space S, a finite action
space A, a transition kernel p : S × A × S → [0, 1], a reward function r : S × A → R, a
discount factor γ ∈ [0, 1), and an initial state distribution p0 from which the initial state s0 is
sampled. The goal of the learning task is to learn a policy π ∈ Π (π : S × A → [0, 1]) such that
the expected cumulative reward is maximized. Usually, a demonstration trajectory is denoted as
D = [(sd1 ,a

d
1 ), (s

d
2 ,a

d
2 ), . . . , (s

d
n ,a

d
n)], where (s,a) is the state–action pair. And the demonstration

trajectories are usually generated by rolling out an expert policy to simulate an MDP.
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We chose Q-Learning as our algorithm based on two reasons. First, due to its simplicity and
effectiveness [117], Q-Learning (with its variants, such as DQN) is a widely adopted algorithm in
LfD [59]. Second, Q-Learning is especially suitable for LfD scenarios where the reward function is
already defined, which is in line with our case. Note that the contribution of this article is not the
algorithm part, so we simplified the learning problem to make it more feasible for Q-Learning.
Q-Learning seeks to learn a policy that maximizes the expected action value, i.e., cumulative

discounted rewards starting from the initial state distribution, whereQ is the action value function.
Before the learning, Q is initialized to a possibly arbitrary fixed value. Then, at each time t , the
agent selects an action at , observes a reward rt , enters a new state st+1, andQ is updated. The core
of the algorithm is value iteration update:

Qnew(st ,at ) ← Q(st ,at ) + α
(
rt + γ ·max

a
Q(st+1,a) −Q(st ,at )

)
, (1)

where α is the learning rate which is set to 0.5 to balance the previous knowledge with the new
reward, and γ is the discount factor which is set to 0.9 so that the learning effectively takes into
account long-term returns. Besides, to leverage the exploration-exploitation tradeoff [34], we adopt
the epsilon-greedy policy and set the epsilon to 1 with a linear decay scheme (1.0 to 0.001). In the
following, we introduce the definitions of action, state, and reward in the context of generating
learning engagement.
Action. As suggested by [135], the action a can directly specify the torques of robots’ joints.

Since Q-Learning is only feasible for discrete action space, we need to discretize the action space.
For simplicity, we design the action as one of the three operations of the Euler angle of each
joint’s configuration, +0.1/−0.1/keepinд still . Since our requirements for accuracy are not high,
such a design method can reduce the action space without loss of generality. Considering Pepper
as our example robot, we select skills that can be performed via upper limbs, so only the robot’s
upper limbs will be involved in the movement. Hence, the final action space is a ternary choice
(+0.1/−0.1/keepinд still) of these eight correlated joint configurations, Left/Right Shoulder’s θpitch,
Left/Right Shoulder’s θroll, Left/Right Elbow’s θyaw, Left/Right Elbow’s θroll, while satisfying the ro-
bot’s physical constraints.
State. Following previous work [134], we define the state of the robot as the rotations of each

corresponding link expressed in Euler angles and computed in the robot’s local coordinate frame.
With the same state feature transformation, we can also get the target state by extracting the same
set of features from the demonstrator’s pose. As suggested by [135], we augment the state features
with a set of target features resulting in a combined state represented by the concatenation of
the robot’s features and the target (human demonstrator’s) features, Φ(robot)| |Φ(tarдet). We also
conduct discretization for the state representation. Note that in our state design, we only consider
the robot’s pose learning. While in a more comprehensive design, the height of the robot’s root
(pelvis) from the ground, the center of mass velocity of each link, the relative positions of each
link with respect to the root, and other factors related to the environment should be taken into
consideration.
Reward. We design a reward that encourages the robot to match the joint orientations of the

demonstrated motion at each timestep, as we want the robot to perform the skill as similarly as
the human instructor. The reward can be formulated as the difference between the joints’ Euler
rotation angles of the robot motion and those of the human demonstrated motion. Similar reward
designs can be seen from locomotion imitation tasks [134, 135].

Reward = exp

(
−

N∑
i=1

(
JHi − JRi

))
, JHi ∈ Conf iд

H, JRi ∈ Conf iд
R, (2)
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where JHi /J
R
i is one of the human’s/robot’s joint configurations (in Euler rotation angles form). The

training workflow of our task is: Once the first demonstration is given, the learning process gets
started and goes through iterative training. If a new demonstration is received during training,
the algorithm will use the newly demonstrated motions as the optimal reference for the following
round of policy deriving.
Learning Status Indicator. In reinforcement learning, based on learning goals, there are many

learning status indicator candidates, such as the entropy [67, 161], the value of the loss/cost func-
tion [44, 104], the normalized cumulative reward (NCR) [135], and so on. In this article, we
adopt entropy [145], which is widely used to measure a model’s uncertainty [10], as our learn-
ing status indicator because it can reflect the stability of Q-Learning representing whether the
underlying policy is well-trained.
We define the probability of one action by following the Boltzmann distribution, as defined in

Equation (3). And the entropy of each state is defined as the sum of all actions’ entropy values
(Equation (4)). Thus, for a current timestep t , the entropy of the policy can be calculated by aver-
aging all the entropy values of each state in training steps from t0 to t (Equation (5)).

P(ai |si ) =
exp(τ ·Q(si ,ai ))∑
j exp(τ ·Q(si ,aj ))

. (3)

E(si ) = −
∑
ai

P(ai |si )loдP(ai |si ). (4)

E =
1

|St0:t |

∑
si ∈St0:t

E(si ). (5)

After getting the entropy, we design the learning status indicator as below:

LSe = 1 −
Ee − Emin

Emax − Emin

. (6)

Which normalizes the entropy at any given episode Ee byMin–Max Normalization, where Emax

is the maximum entropy of all training episodes (usually it occurs in the initial stage of the training
process), and Emin is the expected minimum entropy of all training episodes (can be estimated
through pre-training or prior training). Under such design, if the robot’s policy is under-developed,
Ee will be close to Emax , and the learning status indicator LSe will be close to 0. In contrast, if the
robot’s policy is well-developed, Ee will be close to Emin , and the learning status indicator LSe will
be close to 1.
Note that we should be cautious about two issues when using entropy as the learning indica-

tor. On one hand, the minimum entropy needs to be estimated from the previous training, which
may be slightly different from the minimum entropy that the current training process can achieve.
On the other hand, the entropy calculation can sometimes be affected by outliers, which may
cause fluctuation in different training episodes. However, in our target scenario, it is appropriate
to choose entropy as the indicator for two reasons. First, under the same definition, the robot’s ac-
tion space and state space when learning similar skills are also similar, so the estimated minimum
entropy from the previous training will not be much different from the minimum entropy in the
current skill training process. In addition, the five rounds of learning we collected were selected
over a long time span, which is also in line with the common practical scenarios of LfD. When cal-
culating the entropy of a certain round, the influence of fluctuations on the current round is almost
negligible, and it can still truly reflect the learning state of the robot in the current time period.
Once finishing the design of the learning algorithm and the calculation of the learning status

indicator, the next step is to combine the learning status indicator with the previously designed
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two kinds of engagement expression, Gaze Following and Rhythm Synchrony. Next, we propose
two forms of Learning Engagement that can reflect the internal learning status of a robot via en-
gagement expression.

3.4.2 Learning Engagement 1: From Zero to One, the Z2O-Mode. In human learning, we have
this observation: one tends to be more active if he/she gains more confidence in learning [16].
Inspired by this, we designed the first learning engagement, which reflects the learning status
of robots by adjusting the intensity of robots’ actions. Specifically, if a robot is in good learning
status, its actions can be designed to be quick and powerful, and if it is in poor learning status, its
actions can be designed to be slow and powerless. To achieve this, first, according to our previous
design of attentional and behavioral engagement, each joint has a target configuration to control
the robot’s behavior at each moment, e.g., its head joint is configured to direct the eye gaze to the
attention point, and its elbow joint is configured to raise arms to an exact height, and so on. Thus,
each timestep has a set of current configurations of each joint and a set of target configurations
of each joint based on the proposed engagement expression. If we want the robot to show full
engagement, we can directly adjust the corresponding joints from the current configuration to the
target configuration. Taking the robot’s learning status into consideration, if the robot’s learning
status is poor, we will let the robot move slightly and if the robot’s learning status is good, we will
let the robot move more obviously, which can be achieved by setting a motion decay as follows:

conf iдi = conf iд
C
i +

(
conf iдTi − conf iд

C
i

)
× LSe , (7)

where conf iдCi is the current configuration of joint Ji , conf iд
T
i is the target configuration of joint

Ji , and LSe is the robot’s learning status in the current episode, as defined in Equation (6). Under
such a design, at the beginning of learning, when the learning status indicator LSe of the back-end
policy is small (close to 0), the behavior of the robot will look slow and sluggish. With the gradual
improvement of the policy, when the learning status indicator LSe becomes large (close to 1), the
behavior of the robot will become quick and flexible.

3.4.3 Learning Engagement 2: From Disorderly to Orderly, the D2O-Mode. The second learning
engagement reflects the learning status of robots by adjusting the degree of order/chaos of robots’
actions. This design is inspired by the common phenomenon in human learning and especially
in children learning, where a disorderly behavior is usually regarded as disengagement while an
orderly behavior is often seen as engagement [143, 170]. This kind of phenomenon can be utilized
to coincide with the learning progress of the robot. At the beginning of learning, when the en-
tropy of the policy is relatively large, the robot’s behavior can be designed to look chaotic and
unpredictable. With the gradual improvement of the learning, when the entropy of the policy is
becoming relatively small, the robot’s behavior can be designed to become regular and predictable.
Based on such a design, we can control the configuration of robot joints to realize the transforma-
tion from disorderly to orderly. The specific implementation is detailed as follows.
Before controlling the robot’s joints to rotate disorderly, we need to get the maximum range

(usually determined by the physical constraint) of motion of a robot joint to ensure that the robot
does not make unrealistic movements. For each joint, we first get the upper boundary boundU
and the lower boundary boundL within the robot’s physical limit. At each timestep, based on the
designed attentional and behavioral engagement, we can get the target configuration of each joint,
conf iдTi . Andwe can then control the robot’s joints to move randomlywith the following equation:

conf iдi =

{
conf iдTi + (boundU − conf iд

T
i ) × R, i f R ≥ 0

conf iдTi + (conf iд
T
i − boundL) × R, i f R < 0,

(8)
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where the (boundU − conf iд
T
i ) and (conf iд

T
i − boundL) are the feasible moving intervals around

the target configuration of each joint conf iдTi , and R is a random degree controller parameter
to make the configuration of the robot move randomly around the target configuration without
exceeding the motion limit. We define the random degree controller R = rand · (1 − LSe ), which
consists of two parts: one is a random number rand ∈ [−1, 1] aiming to produce a chaotic effect, the
other is a degree parameter, which is based on the learning status LSe of the training algorithm
to control the level of randomness of robot’s joint motion. If the random degree controller R is
greater than or equal to 0, then we let the robot’s configuration move randomly from the target
configuration to the upper boundary, that is, choose a position randomly between the current
target configuration and the upper boundary as the current robot’s configuration. Similarly, when
the random degree controllerR is less than 0, we let the robot randomlymove to a position between
the target configuration and the lower boundary. We can adjust the random degree through the
parameter LSe . If the current learning status of the robot is good where the LSe is large (close to
1), the random degree (1 − LSe ) will be low (close to 0), and the action of the robot will be more
orderly and predictable. On the other hand, if the current learning status of the robot is poor where
the LSe is small (close to 0), the random degree (1 − LSe ) will be high (close to 1), and the robot’s
action will be more disorderly and unpredictable.

4 USER STUDY

We conducted a user study to investigate the effects of the proposed Learning Engagement
designs on users – human instructors in RLfD. Specifically, we focused on two research questions
(RQs):

RQ1. How will the proposed Learning Engagement designs affect users’ mental model

of robots’ learning progress? Specifically, we want to explore (RQ1.1) users’ perceptions of
robots’ engagement, (RQ1.2) users’ perceptions of robots’ learning status as well as the correla-
tion between user-perceived robot learning engagement and user-perceived robot learning status,
and (RQ1.3) users’ expectation of robots’ future learning outcomes. Moreover, we want to verify
(RQ1.4) the accuracy of users’ mental models of robot learning progress.

RQ2. How will the proposed Learning Engagement designs affect users’ overall percep-

tions of the robot and the RLfD process? Specifically, on one hand, we are interested in users’
perceptions of the robot in terms of (RQ2.1) the acceptability of its behavior, (RQ2.2) its intelligence
and ability, (RQ2.3) its potential to improve further given more demonstrations. On the other hand,
we want to gain a better understanding of (RQ2.4) users’ perceptions of the quality of their own
demonstrations, (RQ2.5) their self-reflection during the teaching process, (RQ2.6) their feeling of
tiredness, and (RQ2.7) their willingness to continue teaching the robot. Furthermore, wewould like
to investigate (RQ2.8) the effect on users’ engagement, i.e., the re-demonstration and re-watching
behaviors in the teaching process.

4.1 Hypotheses

The key independent variable (IV) in our user study is the engagement mode adopted by robots.
We compare the proposed Learning Engagement, Z2O-Mode and D2O-Mode, with two baselines—
the Full Engagement mode (Full-Mode) and the None Engagement mode (None-Mode). In the Full-
Mode, robots always show the highest level of active engagement regardless of their actual learning
status. In the None-Mode, robots always remain motionless during humans’ teaching processes,
which is common in RLfD settings. These two baselines enable us to compare the effects on users’
perceptions with/without considering the actual learning status and with/without showing robot
engagement.
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We proposed a series of hypotheses. Prior studies suggest that non-verbal social signals such as
gaze [132] and movement synchrony [98] are effective engagement cues for human learners. We
thus hypothesized that

H1 (RQ1.1). Users’ perceptions of robot engagement intensity in Z2O-Mode and D2O-Mode
will be significantly different from Full-Mode (H1a) and None-Mode (H1b). And users will perceive
significant changes in robot engagement across five teaching rounds in Z2O-Mode and D2O-Mode
(H1c), but not in Full-Mode and None-Mode (H1d).

According to the educational theory that the degree of students’ engagement will influence
teachers’ perceptions of students’ learning status and expectations of learning outcomes [18, 180],
we raised the hypotheses H2 and H3:

H2 (RQ1.2). Users’ perceived robot learning progress in Z2O-Mode and D2O-Mode are signifi-
cantly different from Full-Mode (H2a) and None-Mode (H2b). Moreover, users will perceive signifi-
cant changes in robot learning status across the five teaching rounds in Z2O-Mode and D2O-Mode
(H2c), but not in Full-Mode and None-Mode (H2d). Also, users’ perceived robot learning status will
be significantly correlated with users’ perceived robot engagement (H2e).

H3 (RQ1.3).Users’ expectations of robot future learning outcomes in Z2O-Mode andD2O-Mode
will be significantly different from Full-Mode (H3a) and None-Mode (H3b). Furthermore, users’
expectations will significantly change across five teaching rounds in Z2O-Mode and D2O-Mode
(H3c), but not in Full-Mode and None-Mode (H3d).

Since we adapted robots’ engagement expression to their underlying learning status, we hypoth-
esized that

H4 (RQ1.4). Users’ perceptions of robot learning progress in the proposed Z2O-Mode and
D2O-Mode will be significantly more accurate than Full-Mode (H4a) and None-Mode (H4b).

As suggested by [174] that showing engagement will make users hold a more positive attitude
towards the robot and their own demonstrations, we proposed the following two hypotheses:

H5 (RQ2.1–RQ2.3). Users will have a significantly higher perception of robot behavior accept-
ability in the proposed Z2O-Mode and D2O-Mode than Full-Mode (H5a) and None-Mode (H5b).
Besides, robots in the proposed Z2O-Mode and D2O-Mode will be perceived as significantly more
intelligent than Full-Mode (H5c) and None-Mode (H5d). Furthermore, if given more demonstra-
tions, robots in the proposed Z2O-Mode and D2O-Mode will be perceived to have significantly
greater potential to improve further than in Full-Mode (H5e) and None-Mode (H5f ) if given more
demonstrations.

H6 (RQ2.4). Users will perceive their demonstrations to have a significantly higher quality
when teaching robots in the proposed Z2O-Mode and D2O-Mode than in the Full-Mode (H6a) and
None-Mode (H6b).

It has been shown that self-reflection is a critical aspect in the teaching process [8] which is
conducive to the adjustment of the teaching so as to achieve better teaching outcomes [176]. Thus,
we hypothesized that

H7 (RQ2.5).When teaching robots in the proposed Z2O- and D2O-Mode conditions, users will
reflect significantly more on themselves than when teaching robots in the Full-Mode (H7a) and in
the None-Mode (H7b).

In terms of users’ experience in the teaching process, it has been shown that learners giv-
ing informative feedback will lead to a positive experience for teachers [25, 45, 93]. We thus
hypothesized that
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Fig. 7. An illustration of the user study. (a) A participant shows her/his demonstration in front of a computer

with a webcam. (b) A skeleton-based avatar will teach the robot in a simulated environment.

H8 (RQ2.6–RQ2.7). First, users will feel significantly less tired when teaching robots in
the Z2O- and D2O-Mode than in the Full-Mode (H8a) and in the None-Mode (H8b). Moreover,
users will be significantly more willing to continue teaching robots in the Z2O- and D2O-Mode
conditions than in the Full-Mode (H8c) and in the None-Mode (H8d).

Moreover, it has been shown that robots showing informative behaviors can increase users’
engagement, which can be reflected by the humans’ efforts put into the teaching process [99]. We
hypothesized that

H9 (RQ2.8). Users’ re-demonstration behaviors in the proposed Z2O- and D2O-Mode will be
significantly more frequent than in the Full-Mode (H9a) and in the None-Mode (H9b). Similarly,
users’ re-watching behaviors in the Z2O- and D2O-Mode will be significantly more frequent than
in the (H9c) Full-Mode and in the (H9d) None-Mode.

4.2 Experimental Setup: Interface and Task Design

For the user study, we developed an online human–robot teaching platformwhere participants per-
formed a demonstration in front of a webcam, and the captured motions drove a skeleton-based
avatar to replicate the demonstration in front of a virtual robot student in a simulated environment.
The user study setup is illustrated in Figure 7. Besides the effects of COVID-19, we chose to carry
out the study as an online simulation rather than a physical test due to the following considerations.
First, we would like to minimize the possible interference introduced by the technical constraints
of physical robots. Pepper, used in our experiment, often moves with undesirable noises, jerks, and
vibrations, which could impact human participants’ assessment of its ability. Second, Pepper has
limited processing power, and thus we would need to send visual-audio signals captured by Pep-
per to an external server for processing and then send the output back to Pepper for engagement
expression, which would lead to an undesirable delay in the engagement expression. Third, we
want to mitigate the influence of inconsistent quality of demonstrations performed by different
individuals. In a field test, an instructor’s real-time demonstrations may contain noises introduced
by environmental factors such as the accuracy of motion-capture devices [172], which would con-
sequently affect robots’ expressed learning engagement. Experiencing RLfD in simulation, on the
contrary, can avoid all these side effects by providing a controllable and measurable environment
to monitor and evaluate a robot’s performance, which is commonly adopted as a promising alter-
native to real-world encounters in human–robot interaction studies [38, 174]. Prior studies have
verified that a robot’s internal status can be effectively conveyed to users via an on-screen display,

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 5, Article 70. Publication date: September 2023.



Modeling Adaptive Expression of Robot Learning Engagement and Exploring 70:21

and users’ interpretations of an on-screen robot are consistent with those concerning a physical
robot [81, 177, 178, 193].

We were well aware of the possible experience gap between interacting with a robot physically
and online. To ensure the face and ecological validity to the best extent, we followed the guidelines
proposed in [38] to carefully construct the simulation environment with key structural conditions
transposed from the real world, implement the algorithm and design the experiment to avoid in-
troducing unwanted variables and provide multi-perspective views to enhance participants’ sense
of presence in the simulation. Next, we will introduce these measures in detail.
Simulation Environment Construction. We used Robot Operating System (ROS)3 for (virtual)

robot control, and utilized Unity4 for simulation rendering. As shown in the online Appendix,2

the simulated RLfD environment illustrates a standard skeleton model (from CMU Mocap1) of a
human instructor avatar performing a skill in front of a virtual Pepper robot.We utilized the human
avatar to transpose participants’ physical motion into the virtual space as a reference for the robot
to simultaneously express its engagement and to enable participants to embody themselves in the
virtual space. We took a skeleton-form avatar to facilitate users’ sense of presence in the virtual
environment by reducing the mismatch of avatar appearance to theirs (e.g., gender, age, and skin
color) and to avoid the uncanny valley effect [118]. In a real-world deployment, the avatar can be
controlled by projecting streams of motion data collected from an actual human through motion-
capture devices or computer-vision-based sensors onto these joints on the fly. In our experiment,
however, to ensure a robust and consistent quality of demonstrations against the possible impact
of personal, environmental, and technical factors, we drove the avatar with the same set of pre-
recorded demonstrations (detailed below). And we took some measures to ensure participants
believed the avatar represented their own teaching.
Skill Selection and Algorithm Implementation. The target scenario of this work is humans teach-

ing robots some daily skills, and the objective is for robots to eventually master these skills by
learning from demonstrations. The task selection thus needs to satisfy the following criteria. First,
the skills should not be too complicated for laypeople to teach, since it is a robot learning task
rather than a human learning task. Otherwise, users’ attention may shift from observing the ro-
bot’s engagement behavior to checking whether their demonstration is successful or not. Second,
the skills should be feasible for a humanoid robot—Pepper in this work—to perform, given the
degree of freedom of its movable joints. Based on the above two considerations, two authors in-
dependently selected skill candidates deemed appropriate from existing Mocap datasets1 widely
used by existing work [134]. They then discussed together and finally chose four skills with poten-
tial applications in real-world RLfD tasks for the study: washing a window, playing piano, boxing,
and moving a heavy box (the illustration of the four skills can be found in the online Appendix2).
These skill motions lasted for 15 to 20 seconds. To control the progress of robot policy derivation
in the experiment, we equipped robots with the same learning algorithm trained on the same set
of pre-recorded Mocap data of the four skills. We deployed Q-Learning described in Section 3.4 as
the learning algorithm and used a CPU (Intel i7-10750) for the training. For the actual learning sta-
tus in each skill-teaching task, we pre-trained the robot policy and sampled five episodes (i.e., the
10kth , 30kth , 50kth , 70kth , 90kth episode) from the entire learning process to represent different
learning stages before the final policy was learned. The learning status indicators (described in Sec-
tion 3.4.1) in the five episodes formed a learning progress curve for each skill. For a fair comparison,
we computed the averaged learning indicator value across the four skills at each episode to ensure
that robots’ learning status in the same learning stage was the same when learning different skills.

3https://www.ros.org/.
4https://unity.com/.
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Fig. 8. The screenshots of our user study webpage. (A) The introduction page where we introduce the task

and procedure of the experiment and get participants familiar with the whole process. (B) The main interface

of the experiment where participants are required to teach a robot following three steps. (C) The demon-

stration recording interface where participants show their demonstration in front of their device’s webcam.

(D) The interface of teaching a robot in the simulated environment where both first-person view and full-

angle view are provided for participants to watch the teaching process.

Multi-view Video Recording. Then, we recorded the robot’s expression of engagement in the
four engagement modes in real time responding to the avatar’s demonstration. To avoid confusing
users, we designed four separate versions of Pepper robots with different names, each equipped
with one engagement mode. It thus appears to users that the robot in each mode is learning
from scratch. To remove bias caused by the robots’ “identity”, we named them after four fruits,
i.e., Apple, Banana, Orange, and Pear. More importantly, to improve the sense of immersion and
facilitate users’ observation, we provide recordings from two views: a fixed first-person view and
a rotatable full-angel view (as shown in Figure 8(D)). In the first-person view, users would feel that
they are watching the robot student face to face, enabling them to inspect the robot’s behavior
clearly in close proximity. The full-angle view allowed users to observe both the robot’s and
the instructor’s behavior in a teaching environment simultaneously and explore the scene from
different angles. In total, we captured 4 modes × 5 iterations × 4 skills × 2 views = 160 videos.
Experimental Website Development.We established an experimental website to conduct the user

study online. Figure 8 shows the screenshots of the web interfaces of our study. The website con-
sists of three key sections. (1) The introduction section introduces the task of the experiment
to familiarize participants with the whole process (Figure 8(A)). (2) The main teaching section re-
quires participants to watch a given skill (Figure 8(B)), demonstrate the skill in front of the webcam
(Figure 8(C)), and then view an avatar teaching an assigned robot on their behalf in the simulated
environment (Figure 8(D)). Through these steps, we hope to give participants the impression that
they are actual instructors rather than bystanders. (3) The feedback collection section includes a set
of in-task and post-task questionnaires for participants to fill out online. The user study website5

can be accessed via common browsers.

4.3 Participants

After obtaining institutional IRB approval, we recruited participants through word of mouth and
social media posters. A total of 48 participants joined and successfully completed the whole ex-
periment with high quality. We also verified the face validity of our study that all 48 participants

5https://userstudy.link/.
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Fig. 9. The procedure of the user study. First, we introduce the task to participants and get them familiar

with the teaching process. Then, four skill-teaching tasks are conducted one by one. In each skill-teaching

task, participants are asked to go through five teaching rounds step by step (note that in the second to

the fifth round, steps 1&2 are optional). Once finishing one teaching round, they are required to answer an

in-task questionnaire, and once completing one skill-teaching task, they are required to fill in a post-task

questionnaire. After all four skill-teaching tasks are finished, we conduct a final semi-structured interview

with participants.

considered themselves to be actually teaching the robots. Among them, 20 self-identified as female
and 28 as male; the average age was 25.2 (ranging from 22 to 32 years old); 26 were students and
22 were full-time employees. In addition, all participants own a Bachelor’s degree or higher with
diverse major backgrounds, including computer science, civil, chemistry, math, education, foreign
language, and so on. And 15 reported having prior experiences interacting with robots, such as
cleaning and food delivery robots, in their daily lives. The entire study lasted for about one hour,
and they received compensation of USD 10 each.

4.4 Procedure

Figure 9 illustrates the procedure of the user study. We adopted a within-subjects design with the
engagement mode as the independent variable. And each mode was assigned a different skill to
teach. We counterbalanced the order effect via the Latin Square design, to shuffle the mode-skill
assignment and the order of engagement modes. This led to a total of 4 ∗ 4 = 16 combinations of
engagement mode and skill. Each combination was randomly assigned to three participants.
After obtaining informed consent, we first introduced the task of this experiment to participants.

Next, we presented portraits of four robots under different names and in different postures to
participants (as shown in the top row of Figure 8(A)), to strengthen participants’ impressions that
these were four independent robots. We told participants that “robots may have different reactions
in the learning process, so please pay attention to them”. Then, we showcased how to teach a robot
a skill by taking teaching a driving skill as an example (selected from the same Mocap dataset
with the same requirements). More specifically, we provided videos (as shown at the bottom of
Figure 8(A)) to help participants understand the three steps to teach a robot. Participants were
allowed to watch the example videos and try to demonstrate the skill repeatedly until they could
follow the course of action well. After participants confirmed their understanding of each step’s
task requirements, they proceeded to the main experiment.
Once the main experiment started, participants were assigned four skills to teach in a specified

order. Each skill required five rounds of teaching and each round involved three steps. In the
first step, participants were asked to watch the Mocap demonstration video of the given skill to
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learn how to perform it. They were allowed to view it as many times as needed until they could
reproduce the skill. We then asked participants a simple attention check question “What is the
skill to teach?” to check their understanding and seriousness about the study. They had to choose
the correct answer to advance to the next step.
In the second step, participants were asked to grant webcam access to the experimental website.

Once done, their body movement would be captured and streamed to a video feed window on
the study webpage in real-time. An outline of a translucent human figure was drawn on top of
the video images to help participants adjust their distance and position to the webcam (shown in
Figure 8(C)), which would keep the most appropriate shooting angle and foreground-background
layout. After participants clicked the Start Recording button, a 10-second countdown appeared, giv-
ing them enough time to get to the filming position indicated by the outline and prompting them
that the recording was about to begin. As soon as the countdown ended, participants could start
their demonstration. To ensure consistent demonstration quality, we set a fixed length of demon-
stration recording for each skill based on the corresponding Mocap data and pilot tests. When
the recording was about to end, another 10-second countdown would appear on the interface to
prompt people that the recording would automatically terminate in 10 seconds. Usually, partici-
pants could complete all the actions before the end of the second countdown; in such cases, they
were instructed to return to a natural standing posture and keep it until the recordingwas done.We
told them that an action recognition algorithm running behind the webpage would automatically
segment and cut off their standing period after the demonstration. And we allowed participants to
record as many times as necessary by clicking the Record Again button if they would like to adjust
their demonstrations. It should be noted that in this step, we did not actually record participants’
demonstrated actions for training the robot; instead, the goal of this step was to give participants
a real sense of participation, and thus we simulated the actual recording process in a strict control
as required in actual RLfD teaching process.
In the third step, we told participants that the demonstration they had just recorded had been

transposed to their avatar in the virtual space and would be replayed in front of a robot student.
In this way, they got to watch how the robot student would react to their teaching in real-time
through the webpage (as shown in Figure 8(D)). We provided a Re-Watch button for them to play-
back the teaching process as many times as they want. After completing the above three steps of
the first teaching round, we asked participants to answer an in-task questionnaire related to the
robot’s reactions during the teaching process just now. After answering all questions, they could
click the Next-Round of Teaching button to enter the subsequent round of teaching tasks, if any.
Participants needed to repeat the above three steps in the second to the fifth teaching round,

but the first and the second steps were both optional. We told participants that if they wanted to
review the standard demonstration of the skill, they could go through the first step again. Besides,
if participants would like to improve their demonstration for any reason, they could go through
the second step and record their demonstration again. Otherwise, they could start a new teaching
round directly from the third step. In this case, participants were informed that the latest demon-
stration (from the previous teaching round) would be presented to the robot by the avatar. After the
completion of each teaching round, the same in-task questionnaire would be given to participants.
Upon completing all five rounds of teaching, we asked participants to fill out a post-task ques-

tionnaire consisting of questions related to their perceptions of the RLfD process. And all four
skill-teaching tasks followed the same procedure and protocol as described above. Finally, at the
end of the entire study, we conducted a semi-structured interview and collected participants’ feed-
back on their feelings and thoughts during the experiment.
The whole study was conducted online, and one of the authors who served as the experimenter

accompanied participants throughout the process via Zoom—a video conferencing software,
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Table 1. Purposes (Related Hypotheses), Questions, and Answer Options of the In-task and

Post-taskQuestionnaires

Purpose Question Answer option

In-task Questionnaire

Manipu-
lation

Q1. Do you think the robot’s eye gaze was following your demonstration? (7: Strongly agree, 1:
Strongly disagree)

Check Q2. Do you think the robot’s upper limb was following the rhythm of your
demonstration?

(7: Strongly agree, 1:
Strongly disagree)

H1
Q3. How do you feel that the robot is engaged in the teaching process? (7: Strongly engaged, 1:

Strongly disengaged)

H2
Q4. To what extent do you think the robot has mastered the skill?
Please give a score to the robot (7 points: fully master the skill).

(7: 6-7 point, 1: 0-1 point)

H3
Q5. What do you think is the likelihood that the robot will master
the skill in the future?

(7: Very likely, 1: Very
unlikely)

Post-task Questionnaire

H5

Q1. Do you agree that the robot’s behaviors in the learning process are
acceptable/reasonable?

(7: Strongly agree, 1:
Strongly disagree)

Q2. Do you agree that the robot is intelligent and has great learning ability? (7: Strongly agree, 1:
Strongly disagree)

Q3. Do you agree that if given further demonstration, the robot
will learn much better?

(7: Strongly agree, 1:
Strongly disagree)

H6
Q4. Do you agree that your demonstration is appropriate for robots
to learn based on the robot’s reactions?

(7: Strongly agree, 1:
Strongly disagree)

H7

Q5. Have you ever reflected on the quality of your demonstration or whether
your demonstration works? Please rate how much you reflect on yourself.

(7: Reflected a lot, 1: Did
not reflect at all)

H8

Q6. Do you feel tired when teaching the robot? (7: Strongly agree, 1:
Strongly disagree)

Q7. Do you want to continue to teach such a robot? (7: Strongly agree, 1:
Strongly disagree)

Q8. Do you have any other thoughts? Please feel free to write it down. Any comment

providing non-interference operation guidance when necessary. Due to the complexity of the
experiment, we allowed participants to ask the experimenter questions whenever needed and
encouraged them to express their ideas verbally at any time during the experiment. Participants
agreed to share their screens with us on Zoom, and with their permission, we recorded the entire
study.
We took twomeasures to verify the face validity of our experiment design. First, during the study,

the experimenter carefully observed the user’s reaction to determine whether the user realized or
suspected that this was a pre-recording. If the user showed any sign of doubt, we would exclude
the data from this user. Second, since we had recorded the whole process of the experiment with
the consent of the user, two authors carefully reviewed all the feedback from the user during the
experiment, including the thinking aloud and all the recordings of the experiment process, and
then strictly judged whether the user perceived that it was pre-recorded. As long as one of the two
authors perceived that the user had doubts, it was judged that the user did not pass the verification.

4.5 Measurements

We measured participants’ perceptions of robots’ reactions in each round of teaching and their
overall perceptions and experiences of the teaching process by the in-task and post-task question-
naires, respectively, shown in Table 1. Through the questions, we can directly access participants’
perceptions to investigate a set of hypotheses (H1–H3, H5–H8). Besides, we can explore further
findings from their ratings. To verify H4, we measured the accuracy of users’ mental model of
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Fig. 10. Participants’ perceptions of correspondence level of robots’ gaze following and rhythm synchrony

with the given demonstration (the error bar represents the standard error).

robots’ learning progress by calculating the similarity between participants’ perceived robot learn-
ing progress and the actual robot learning progress via the Mean Square Error (MSE) measure.
In addition, we recorded the number and timestamps of click events of the two buttons Record
Again and Re-Watch, which can provide more objective information about participants’ behavior
during the teaching process and help us investigate the hypothesis H9. Furthermore, transcrip-
tions of participants’ verbal feedback – thinking aloud [70] throughout the study and of the final
exit interviews could provide more in-depth insights. Specifically, in the semi-structured inter-
view, we first invited participants to provide the reasons behind their answers to each in-task and
post-task question. Then, we collected their opinions to some other open-ended questions, such
as (i) “Which robot do you want to teach most, why?”, (ii) “What’s your feeling when teaching the
[name] robot?”, (iii) “How do you feel after completing the task of teaching the four robots?”, and
so on. Participants’ feedback helped us comprehensively understand their perceptions and further
contributed to valuable design implications.

5 RESULT

In this section, we present results from the user study according to our two research questions.
As a Shapiro–Wilk test did not show evidence that the data fits the normality assumption, we ran
non-parametric statistical tests. In general, we ran Friedman Test with post-hoc Wilcoxon signed
rank tests on subjective ratings of 7-point Likert questions. In addition, we carried out thematic
analysis [14] to qualitatively explore participants’ perceptions from the verbal feedback during
the study and in the interview. One author transcribed participants’ in-task verbal recordings and
post-task interview recordings into words. After another author checked the correctness, the two
authors independently open-coded the transcriptions and resolved the conflicts together. In the
rest of this section, based on the proposed research questions and hypotheses, we present the
results accordingly.
Before further exploring, we first verify the effectiveness of our manipulations on robots’ learn-

ing engagement expression. They are measured by Q1 and Q2 of the in-task questionnaire, as
shown in Figure 10. Friedman test results show significant differences among the four engagement
modes in terms of participants’ perceived robot’s attentional engagement level (i.e., Gaze Follow-
ing level, χ 2(3) = 430.187, p < 0.001) and behavioral engagement level (i.e., Rhythm Synchrony
level, χ 2(3) = 451.430, p < 0.001). Moreover, participants’ perceived attentional engagement levels
among five teaching rounds are significantly different in Z2O-Mode (χ 2(4) = 154.378, p < 0.001)
and D2O-Mode (χ 2(4) = 150.308, p < 0.001); so are their perceived behavioral engagement levels
(in Z2O-Mode, χ 2(4) = 160.402, p < 0.001; in D2O-Mode, χ 2(4) = 140.113, p < 0.001). By contrast, for
Full-Mode and None-Mode, there are no significant differences among the five teaching rounds in
either manipulation check measure. These results meet our expectations since we did not alter the
robots’ attentional and behavioral expressions in different teaching rounds in these two engage-
ment modes. Based on the above results, we can conclude that our manipulations are effective.

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 5, Article 70. Publication date: September 2023.



Modeling Adaptive Expression of Robot Learning Engagement and Exploring 70:27

Fig. 11. Participants’ ratings of the questions in the in-task questionnaire (the error bar represents the stan-

dard error). (a) Participants’ perceptions of robots’ engagement intensity in the teaching process. (b) Partici-

pants’ perceptions of robots’ learning status in the teaching process. (c) Participants’ expectations of robots’

future learning outcomes in the teaching process.

5.1 HowWill the Proposed Learning Engagement Affect Users’ Mental Model of
Robots’ Learning Progress? (RQ1)

To answer RQ1, we gather participants’ ratings on their perceptions of robots’ engagement level,
perceptions of robots’ learning status, and expectations of robots’ future learning outcomes after
each round of teaching through an in-task questionnaire (results are shown in Figure 11). Overall,
we found that users held significantly different perceptions of robots’ learning process, which is
mainly caused by the distinct engagement the robots expressed.

5.1.1 Effects on Users’ Perception of Robots’ Engagement in the Teaching Process. Friedman
test shows significant differences among the four engagement modes, χ 2(3) = 431.638, p < 0.001
(Figure 11(a)). Specifically, users’ perceived robot engagement in Z2O-Mode and D2O-Mode
are significantly different from Full-Mode (Z = −8.892, p < 0.001; Z = −7.769, p < 0.001) and
None-Mode (Z = −12.132, p < 0.001; Z = −12.446, p < 0.001), thus H1a and H1b are both accepted.
And participants’ ratings of robot engagement in the different teaching rounds vary significantly
in Z2O-Mode (χ 2(4) = 169.302, p < 0.001) and D2O-Mode (χ 2(4) = 148.353, p < 0.001),H1c accepted,
but not in Full-Mode or None-Mode (H1d accepted).
In general, participants indeed relied on the dynamics of a robot’s gaze and/or motion syn-

chronicity to discern whether and the extent to which it was engaged with their demonstrations.
Specifically, in Z2O-Mode, all participants perceived the robot to be increasingly engaged mainly
because of the robot’s gradually focused gaze and active following. For example, P2 (F, 26) said “At
first, the robot’s eye-gaze was static and it did not look at my motions, but gradually it began to move
and focus on my demonstration”. In D2O-Mode, 45 out of 48 participants raised their assessment of
the robot’s engagement due to the robot’s increasingly orderly gaze and behaviors. For example,
P38 (M, 25) said “Gradually, the robot’s eyes were no longer looking around, and its arms’ movement
became regular, which showed it could participate in my teaching more and more actively”.While in
Full-Mode, the reason whymost (38/48) participants consistently gave high ratings was the robot’s
consistently high intensity of gaze and behaviors. An opposite effect was observed in None-Mode,
where all participants gave consistently low ratings of robots’ engagement. A total of 33 out of 48
participants thought robots’ engagement was low because the robot “did not show any movement
during the teaching process”, and 11 participants even doubted “the robot was broken”.
This finding reveals that users will naturally transfer social norms of human–human interaction

into the process of perceiving AI systems without any additional guidance and learning [115, 123].
This also illustrates the feasibility of expressing the engagement of AI systems by drawing on com-
mon behaviors and habits in human–human interactions. Future HCI research can also draw on
the interaction behavior model between people to a certain extent to design the behavior expres-
sion of the corresponding AI system [20].

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 5, Article 70. Publication date: September 2023.



70:28 S. Ma et al.

5.1.2 Effects on Users’ Perception of Robots’ Learning Status in the Teaching Process. Friedman
test shows significant differences in different engagement modes, χ 2(3) = 398.585, p < 0.001
(Figure 11(b)). Specifically, users’ perceived robot learning status in Z2O-Mode and D2O-Mode
are significantly different from Full-Mode (Z = −7.969, p < 0.001; Z = −6.410, p < 0.001) and
None-Mode (Z = −11.421, p < 0.001; Z = −12.051, p < 0.001) (H2a and H2b accepted). And
participants’ ratings in different teaching rounds vary significantly in Z2O-Mode (χ 2(4) = 167.008,
p < 0.001) and D2O-Mode (χ 2(4) = 161.979, p < 0.001) (H2c accepted), also in Full-Mode (χ 2(4) =
54.958, p < 0.001) but not in None-Mode (H2d partially accepted).

Qualitative analysis shows that the increased engagement intensity in Z2O-Mode and the re-
duced engagement randomness in D2O-Mode led most participants (46/48) to improve ratings on
the robot’s learning status. For example, in Z2O-Mode, P26 (F, 24) said “As the swing amplitude of
the robot’s arm becomes increasingly obvious, I felt it was more and more confident”. Similarly, in
D2O-Mode, P27 (M, 25) mentioned “The robot did not seem to pay attention to my teaching at the
beginning, but it was more and more involved in learning. I think it must have mastered the knack
of the skill”. It is interesting that in Full-Mode, although the robot-expressed engagement does not
change, there is still an upward trend in humans’ perceptions of robot learning status although the
trend is not as steep as in Z2O- and D2O-Mode. It turns out that the positive feedback from the
robot makes 15 out of 48 participants think it is likely to make progress. For example, P30 (M, 24)
said “This robot was able to follow me in the beginning. I thought such a serious robot should make
some progress”. In contrast, in the None-Mode, 47 out of 48 participants did not consider the robot
had made significant progress over five teaching rounds because the robot “did not engage in my
teaching at all”.
We further analyze the correlation between participants’ perceived robots’ engagement and

robots’ learning status using the Spearman correlation. The overall coefficient value across the four
engagement modes is 0.890, p < 0.001 (H3c accepted). Within each engagement mode, the correla-
tion is also significant (Z2O-Mode: 0.903; D2O-Mode: 0.872; Full-Mode: 0.677; None-Mode: 0.628;
all with p < 0.001). Both the qualitative feedback and quantitative results show that users’ percep-
tions of robots’ learning status are highly correlated with their perceptions of robots’ engagement.
This finding reveals the effectiveness of implicitly conveying the internal state of AI systems by

controlling the engagement expression. Our results suggest that users’ perceptions of AI systems’
internal status will be affected by their observation of the behaviors of AI systems, which is also
consistent with users’mental model theory [127]. It is worth mentioning that the learning statuses
behind the four modes of robots in our study are actually the same, but they are perceived to be
different due to the different engagement expressions. Therefore, we should carefully design the
expression of AI systems’ behaviors to help people establish an accurate mental model of the AI
system. Otherwise, a poor design that causes a disparity between user perception and the actual
state of the AI system will affect people’s subsequent behavior and decisions, which may further
impair the outcome of subsequent tasks.

5.1.3 Effects on Users’ Expectation of Robots’ Future Learning Outcomes in the Teaching Process.

Friedman test shows significant differences in different engagement modes, χ 2(3) = 418.758, p <
0.001 (Figure 11(c)). Specifically, participants’ expectations of robots’ future learning outcomes
in Z2O-Mode and D2O-Mode are significantly different from Full-Mode (Z = −8.109, p < 0.001;
Z = −8.273, p < 0.001) and None-Mode (Z = −11.893, p < 0.001; Z = −11.947, p < 0.001) (H3a
and H3b accepted). And participants’ ratings in the different teaching rounds vary significantly
in Z2O-Mode (χ 2(4) = 151.698, p < 0.001) and D2O-Mode (χ 2(4) = −135.447, p < 0.001) (H3c
accepted), and a significant drop is observed in None-Mode (χ 2(4) = 46.747, p < 0.001) but no
difference is found in Full-Mode, thus H3d is partially accepted.
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Participants’ qualitative feedback shows that robots’ increased engagement strengthened
participants’ confidence in robots’ future learning outcomes. Specifically, in Z2O-Mode and
D2O-Mode, 46 out of 48 participants raised their expectations based on the robots’ progress. For
example, P11 (M, 25) mentioned “From acting slow at the beginning to gradually being able to follow
my demonstration, the robot kept refreshing and raising my expectation for it”. While in Full-Mode,
42 out of 48 participants’ expectations were not raised because the robot “seemed to be the same
as it was at the last learning round”. To our surprise, there was a significant decreasing trend in
None-Mode. A total of 20 out of 48 participants were “discouraged” by the lack of improvement in
robots’ reaction to the demonstration, and they “gradually stop expecting more progress from it”. For
example, P4 (F, 25) mentioned “At first, although it did not give me any feedback, I thought the skill
was not difficult for the robot to learn, so I rated 3 (Slightly unlikely). But to my disappointment, the
robot still remained motionless in the remaining rounds, so I gradually lowered my expectation of it”.

This finding implies that an AI system’s behavior (e.g, engagement expression) greatly affects
users’ expectations of it. Users’ expectation of AI systems plays a very important role in human-
AI interaction/collaboration, influencing different aspects of user experience and long-term use
of interactive systems [79, 86]. Appropriate expectations of an AI system (i.e., the expectation
matches AI’s actual potential/capability) can help people properly divide tasks, and correctly de-
cide whether, when, and to what extent to refer to the AI’s suggestions [129]. On the contrary,
inaccurate expectations will lead to disuse (underestimating the capabilities of AI) [97] or abuse
(over-dependence on AI) of the AI system [129], which can cause negative interaction experiences
and poor task outcomes [78, 150]. Therefore, designers must carefully design the behavior of the
AI system to help people calibrate their expectations [198]. In addition, our findings suggest that
users’ expectations for the AI system can be updated continuously throughout the interaction
process. Therefore, designers can assist users in updating their expectations of the AI system by
dynamically adjusting the information communicated by the system.

5.1.4 Accuracy of Users’ Mental Model of Robots’ Learning Progress. To investigate whether
users’ mental model of robots’ learning progress is accurate, we take robots’ real learning progress
as the ground truth (denoted by the Learning Status Indicator of the backend algorithms (detailed
in Section 3.4.1)), ranging from 0 to 1, the higher, the better state (shown in Figure 12(a)). Since
we use a 7-point Likert scale (Q4) to infer participants’ mental model, for easier comparison with
the ground truth, we normalize the collected ratings by dividing them by 7. Then, we calculate
the MSE, a common metric in regression, to measure the distance between the perceived learning
progress (i.e., normalized subjective ratings) and the actual progress (i.e., Learning Status Indicator).
Figure 12(b) shows the results (the lower the better) in different engagement modes. Wilcoxon test
results indicate that the MSE scores in Z2O-Mode and D2O-Mode are significantly smaller than
that in Full-Mode (Z = −4.226, p < 0.001; Z = −4.769, p < 0.001) and None-Mode (Z = −6.031, p <
0.001; Z = −6.031, p < 0.001), thus H4a and H4b are accepted.
This result shows that it is feasible to convey a robot’s internal learning status through appropri-

ate engagement cues in the process of teaching the robot. This approach of encoding the internal
state of an interactive system into its expressed engagement is expected to inspire novel human-AI
communication design in broader scenarios.

5.2 HowWill the Proposed Learning Engagement Affect Users’ Overall Perceptions of
the Robot and the RLfD Process? (RQ2)

To answer RQ2, we gather participants’ ratings on their perceptions of the overall teaching process
in the post-task questionnaire (results are shown in Figure 13). Generally, robots’ communication
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Fig. 12. The accuracy of participants’ perceptions of robots’ learning progress. (a) The averaged learning

status indicators when robots learn the four skills, which are sampled in five different training iterations and

serve as the ground truth. (b) The MSE score of comparing participants’ perceived robots’ learning progress

with robots’ actual learning progress when teaching robots in different engagement modes (the error bar

indicates mean standard error).

Fig. 13. Means and standard errors of participants’ ratings of the questions (7-point Likert scale) in the

post-task questionnaire.

of different engagement could lead to users’ significantly different perceptions of robots and the
teaching process.

5.2.1 Effects on Users’ Perception of the Acceptability of Robots’ Behavior. Overall, Friedman
test shows significant differences among four engagement modes (χ 2(3) = 92.557, p < 0.001).
Specifically, there is no significant difference between Z2O-Mode and Full-Mode, or between
D2O-Mode and Full-Mode, H5a rejected. The acceptability of robot behavior is significantly
higher in Z2O-Mode and D2O-Mode than None-Mode (Z = −5.886, p < 0.001; Z = −6.021, p <
0.001), H5b accepted. Significant differences also exist between Z2O-Mode and D2O-Mode (Z =
−2.000, p < 0.05), between Full-Mode and None-Mode (Z = −5.874, p < 0.001).

Participants generally approved of robots’ behaviors in Z2O-Mode, D2O-Mode, and Full-Mode
because they could receive meaningful feedback from robot learners. Specifically, in Z2O-Mode, all
participants thought the robot’s increased engagement was positive and reasonable. For example,
P19 (M, 23) said “With more learning rounds, the robot’s gaze and arm movements followed my
demonstration actions more and more actively, which look as understandable as a human student”.
And in D2O-Mode, 43 out of 48 participants agree with the robot’s being gradually orderly. For
instance, P33 (F, 29) mentioned “The robot might not understand my action at the beginning, so it
did not pay attention to me, but it gradually followed my motion and learned with me, and I slowly
drew its attention back”. However, five participants did not appreciate the disorderly behavior of
the robot, and thought the robot was not polite. For example, P11 (M, 25) said “Even if the robot
couldn’t understand my teaching, it shouldn’t show chaotic movements”. In Full-Mode, the robot’s
high engagement was welcomed by 39 participants. For example, P20 (F, 25) said “The robot was
very serious from the beginning and had been learning from me attentively until the end, just like a
hard-working human student”. But 13 participants felt that the robot’s response was a little unusual,
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as the robot never showed a noticeable change. For None-Mode, nearly all participants think the
robot’s behavior is incomprehensible and unsatisfactory. For example, P8 (M, 24) said, “How could
a robot not move at all? I was teaching it seriously. At least it should show some reaction”.
Such feedback reflects that users tend to apply social heuristics and norms to judge the behavior

of the humanoid robot used in the experiment, which is consistent with the theory of CASA [123].
This also reminds us to fully consider the possible impact of AI system behavior on people’s per-
ception and acceptance. Designers can refer to some common behavioral laws in humans’ social
interaction and principles in the process of human–human interaction [115] to make the represen-
tation of AI system status match people’s established way of interpreting communicative cues.

5.2.2 Effects on Users’ Perception of Robots’ Intelligence and Learning Ability. Friedman test re-
sult shows significant differences in four engagement modes (χ 2(3) = 101.847, p < 0.001). Specifi-
cally, participants considered robots to be significantly more intelligent and capable of acquiring
new things in Z2O-Mode and D2O-Mode compared with Full-Mode (Z = −2.611, p < 0.01; Z =
−4.212, p < 0.001; H5c accepted) and None-Mode (Z = −6.004, p < 0.001; Z = −5.957, p < 0.001;
H5d accepted). And there is no significant difference between Z2O-Mode and D2O-Mode, while
robots’ intelligence is perceived significantly higher in Full-Mode than in None-Mode (Z = −5.901,
p < 0.001).

Qualitative analysis suggests that all participants think that students who can show instant
feedback especially adaptive feedback are more intelligent. For example, in Z2O-Mode, P19
(M, 23) said “The robot could gradually learn from my demonstration, which showed that this robot
had strong learning ability”. And in D2O-Mode, P22 (M, 27) mentioned “This robot could gradually
catch the rhythm of my movements, just like a smart but naughty child”. As for Full-Mode, although
the robot was highly engaged, its invariable feedback caused participants to lower their ratings.
For example, P25 (M, 24) mentioned “This robot’s behaviors did not make much progress. Maybe its
learning ability is not as high as the other two robots (in Z2O-Mode and D2O-Mode)”. And almost all
participants thought the robot in None-Mode had little learning ability as it “showed no obvious
feedback” and “looked like a sculpture”. It can be concluded that robots’ positive reactions and
adaptation to teachers’ demonstrations are keys to people’s perception of robots’ learning capacity.
This finding reveals that first, users will have a positive attitude towards the ability of an AI sys-

tem that can give feedback. Second, users have more positive perceptions of expressive behaviors
that adapt dynamically to their interactions than fixed ones. Note that sometimes, it is not neces-
sarily appropriate for an AI system to change its behavior just to seem smart, as it may result in an
overestimation of the AI system [77, 198]. Instead, the design of AI system behavior should match
its actual intelligence and capabilities to not mislead users.

5.2.3 Effects on Users’ Perception of Robots’ Potential of Further Improvement Given More

Demonstration. Overall, Friedman test result shows significant differences among the four
engagement modes (χ 2(3) = 115.025, p < 0.001). Specifically, participants rated robots in Z2O-
Mode and D2O-Mode to have significantly higher potentials than Full-Mode (Z = −5.404, p <
0.001; Z = −5.243, p < 0.001; H5e accepted) and None-Mode (Z = −6.000, p < 0.001; Z = −6.012,
p < 0.001; H5f accepted). Furthermore, robots in Full-Mode were rated significantly higher
than None-Mode (Z = −5.859, p < 0.001), and the potential of robots in Z2O-Mode significantly
exceeded those in D2O-Mode (Z = −2.593, p < 0.05).

From qualitative feedback, most participants thought robots in Z2O-Mode and D2O-Mode had
the potential for further improvement based on robots’ increasingly higher engagement. For ex-
ample, P33 mentioned “The robot was gradually getting into a good engagement state, and I thought
it was not far away from mastering the skill”. However, as for the comparison between Z2O-Mode
and D2O-Mode, 18 participants thought the robot [in D2O-Mode] was “like a careless and naughty
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kid” so “it might not achieve as big progress as the serious one [in Z2O-Mode]”. In Full-Mode, most
participants held low expectations due to robots’ little improvement in the past teaching rounds.
As for None-Mode, 47 out of 48 participants gave negative feedback due to the lack of engagement.
For example, P46 (M, 25) said “It [the robot] can never master the skills I teach. No matter how many
times you teach it, you will not be able to let a child who does not want to learn from you learn better”.
The feedback is aligned with the motivation principle in education [166].

This result also shows that the engagement expression of AI systems not only affects users’
perception of the current state but also affects users’ perception of the potential of AI systems,
such as the prediction of the performance of machine learning algorithms in machine teaching
or interactive machine learning [63, 64, 189]. We argue that users’ perceptions of the AI system’s
potential will affect the goal setting and the arrangement of future interactive tasks. Therefore,
when designing the behavior of AI systems, we should consider the nuanced impact on users, so
as to avoid users’ wrong predictions of the potential and future outcomes of AI systems.

5.2.4 Effects on Users’ Assessment of Demonstration Appropriateness. Friedman test shows
significant differences among four engagement modes (χ 2(3) = 54.052, p < 0.001). There are no
significant differences comparing Z2O-Mode and D2O-Mode to Full-Mode; thus H6a rejected.
But participants rated their teaching to be significantly more appropriate in Z2O-Mode and
D2O-Mode than None-Mode (Z = −5.153, p < 0.001; Z = −4.798, p < 0.001; H6b accepted). We also
find significantly higher ratings in Z2O-Mode than D2O-Mode (Z = −2.574, p < 0.05), and higher
in Full-Mode than None-Mode (Z = −5.003, p < 0.001). Note that in different engagement modes,
the demonstration performed in the simulated environment is from the same set of MoCap data
with the same quality. Besides, we observed that almost all participants were able to complete
the demonstration in front of the webcam with high quality and completeness. Nevertheless,
participants’ assessments of their own demonstrations were still significantly influenced by the
robots’ communication of engagement.
Most participants highly perceived their demonstration quality in Z2O-Mode, D2O-Mode, and

Full-Mode because of the robots’ high or increasingly high engagement. For instance, participants
recognized their demonstration as it made the robot (in Z2O-Mode) “more and more engaged in
demonstrations” and it made the robot (in D2O-Mode) “gradually find the key rhythm of the skill”
and it “caught the robot’s (in Full-Mode) attention from the very beginning”.While for None-Mode, 38
participants were not confident about their demonstration due to the robots’ little engagement. For
example, P20 (F, 25) said “If it was not the problem of the robot itself, it must be that my demonstration
was not good enough”.While 10 participants did not doubt their demonstration even the robot did
not show any engagement. Overall, users seemed to mindlessly attribute robot students’ feedback
to their teaching strategies as in human–human teaching [157].

This result reflects that users’ perception of their own performance can largely depend on the
feedback given by the AI partner. Positive feedback from the AI system can lead to users’ positive
self-evaluation, while negative feedback may cause users to lower their self-evaluation, impair
their confidence, and ultimately compromise task outcomes. Therefore, the feedback of the AI
system should be carefully designed according to specific goals. For example, if we do not want
to cause users’ negative self-evaluation, we should pay attention to avoid introducing negative
behaviors into the AI system’s feedback. Conversely, in certain circumstances, if the AI system
needs to raise users’ awareness of their own poor performance, appropriate negative feedback can
be leveraged to prompt users to make timely adjustments.

5.2.5 Effects on Users’ Self-Reflection on Teaching. Friedman test result suggests there are sig-
nificant differences across four engagement modes (χ 2(3) = 9.519, p < 0.05). Specifically, a signif-
icant difference can be found between Z2O-Mode and Full-Mode (Z = −2.404, p < 0.05), but not
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between D2O-Mode and Full-Mode,H7a is partially accepted. Similarly, we do not observe any sig-
nificant difference between Z2O-Mode and None-Mode, nor between D2O-Mode and None-Mode,
H7b rejected. Also, the disparity between Z2O-Mode and D2O-Mode has no statistical significance.
However, participants reflect themselves significantly less in Full-Mode than in None-Mode (Z =
−2.266, p < 0.05).

We originally hypothesized that participants would reflect more upon their demonstrations
when teaching robots in Z2O-Mode and D2O-Mode. But it turns out that participants’ self-
reflection levels are all moderate in the four engagement modes. Generally, participants held mod-
erate self-reflection in Z2O-Mode and D2O-Mode because the robots “were more and more on track
in learning” thus they “did not have to reflect themselves too much”. Interestingly, most participants
had the least reflection in Full-Mode, as the robot expressed positive feedback from the beginning.
For example, P29 (F, 25) mentioned “The robot could follow the demonstration immediately in the first
round, so I thought my teaching had no problem”. On the contrary, participants in None-Mode had
the highest self-reflection because the robot surprisingly did not show any feedback. For example,
P28 (M, 22) said “I couldn’t help suspecting that there was something wrong with my demonstration,
because the robot didn’t interact with me at all”. In summary, human teachers tend to reflect on
their teaching deeper if the robot student does not show the expected behavior.
This finding shows that properly expressing an AI system’s inability (i.e., what and when the AI

system cannot do [91, 141]) rather than blindly catering to users’ expectations can promote users’
critical thinking. Especially in the human-AI collaboration scenario [129], the final task outcomes
depend on the performance of both team members. If the AI system always shows positive feed-
back, it is likely that users will reflect less on themselves and thus cannot make timely adjustments
to achieve optimal task outcomes. Designers should make good use of the critical thinking brought
about by the contrast with users’ original expectations, and express the shortcomings of the AI
system at an appropriate time to evoke people’s reflection and agency.

5.2.6 Effects on Users’ Experience in the Teaching Process. Tiredness is a common measurement
of instructors’ teaching experience [52]. Friedman test result suggests that different engagement
modes lead to significantly different levels of fatigue in teaching (χ 2(3) = 89.594, p < 0.001). In
particular, robots in the Z2O-Mode and D2O-Mode induce significantly lower sense of tiredness
than Full-Mode (Z = −3.470, p < 0.001; Z = −3.706, p < 0.001) and None-Mode (Z = −5.899, p <
0.001; Z = −5.911, p < 0.001) (H8a and H8b accepted). Moreover, participants felt significantly
more tired in None-Mode than Full-Mode (Z = −5.718, p < 0.001), but no significant difference
between Z2O-Mode and D2O-Mode.
In addition, the willingness to teach a robot in the future is also a critical indicator of user experi-

ence [91]. Friedman results show that there are significant differences among the four engagement
modes (χ 2(3) = 96.123, p < 0.001). Specifically, participants expressed significantly stronger will-
ingness to continue to teach in Z2O-Mode and D2O-Mode than in Full-Mode (Z = −2.986, p < 0.01;
Z = −2.303, p < 0.05) and None-Mode (Z = −5.966, p < 0.001; Z = −6.026, p < 0.001) (H8c H8d both
accepted). Besides, participants are significantly more inclined to teach robots further in Full-Mode
than in None-Mode, Z = −5.780, p < 0.001; but no significant difference can be observed between
Z2O-Mode and D2O-Mode.
Qualitative findings show that the reason why participants felt less tired and more willing to

teach robots in Z2O-Mode and D2O-Mode is that most participants (40/48) got positive emotions
during teaching and they prefer to teach students with progressive feedback rather than those
without feedback or with unchanged feedback. For example, P11 (M, 25) in Z2O-Mode said “The
robot made me very excited to see that it little by little followed my demonstration”.And P14 (F, 32) in
D2O-Mode mentioned “I felt a great sense of achievement. I slowly drew an absent-minded student
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Fig. 14. Means and standard errors of the frequency of Re-Demonstration and Re-Watching in the four

engagement modes.

back to the learning state through my hard teaching”. However, if the robot showed non-adaptive
engagement, 25 participants “lacked willingness”. For example, in Full-Mode, P47 (F, 25) said “This
robot was quite hard-working. But as it had never shown any progress, I prefer to teach the other two
robots [in Z2O-Mode and D2O-Mode]”. As the robot in None-Mode did not show any engagement,
participants “felt like teaching in vain” and “did not want to teach this disengaged student any longer”.
For example (F, 27) mentioned “The most tiring experience was teaching Orange [the robot in None-
Mode] who didn’t give me any feedback, which made me exhausted”. To summarize, whether robot
students could give feedback and/or whether the feedback is appropriate are crucial to a teacher’s
teaching experience.
This finding stresses that when designing human-AI interactions, on one hand, it is not just

about completing tasks as the design goal, but also enhancing the experience of the user interaction
process as an important design consideration. Especially when user input takes a long time, the
AI system should provide timely feedback to avoid user fatigue or other negative emotions due to
lack of response. On the other hand, if the feedback provided remains constant over a period of
time, it will also degrade the user’s interaction experience with the AI system.

5.3 Frequency, Timing, and Motivation of Re-Demonstration and Re-Watching

As mentioned in Section 4.5, we collected users’ button-clicking behaviors of Record Again (means
re-demonstration) and Re-Watch buttons. We believe these click logs can, to some extent, objec-
tively reflect the real perceptions and experiences of users in the teaching process. We analyze the
frequency, timing, and motivation of these two kinds of button-click events.

5.3.1 Frequency of Re-Demonstration and Re-Watching. The re-demonstration and re-watching
behaviors can be considered as participants’ active engagement in the teaching process (results
are shown in Figure 14).

Frequency of Re-demonstration Behavior. Friedman test results show significant differ-
ences among the four engagement modes (χ 2(3) = 34.921, p < 0.001). Specifically, the frequencies
in Z2O-Mode and D2O-Mode are significantly higher than Full-Mode (Z = −4.483, p < 0.001;
Z = −3.659, p < 0.001), thus H9a is accepted. A significant difference can be found between
Z2O-Mode and None-Mode (Z = −2.786, p < 0.01) but not between D2O-Mode and None-Mode,
thus H9b is partially accepted. Meanwhile, we log significantly more re-demonstration clicks in
Z2O-Mode than D2O-Mode (Z = −2.814, p < 0.01), and significantly fewer re-demonstration clicks
in Full-Mode than None-Mode (Z = −3.896, p < 0.001).

From the qualitative analysis, we find that in Z2O-Mode, the stillness of the robot at the early
stage and its gradual improvement prompted 42 out of 48 participants to refine their demonstra-
tions. For example, P19 (M, 23) said “The robot might not see my demonstration clearly, so I re-
demonstrated. Later, the robots’ feedback became stronger, encouraging me to demonstrate a few more
times to improve it”. In a similar fashion, the disorderliness at the early stage and the perceptible
progress of the robot in D2O-Mode also encouragedmost participants (28/48) to demonstrate more.
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However, the agility of the robots made 18 participants think that the robot did not need too many
instructions. For example, P48 (M, 23) said “From the beginning, this robot was able to flexibly look
around and swing its arms, which made me feel that it should have started to learn. So I did not think it
was necessary to demonstratemany times”. For a similar argument, the high engagement of robots in
Full-Mode led 35 participants to feel that there was no need to adjust their demonstration. In None-
Mode, the lack of response from the robots made 27 participants eager to demonstrate again; mean-
while, as the robot still had no feedback in the later stage, their enthusiasm seemed to be dampened.

Frequency of Re-watching Behavior. Friedman test shows significant differences among the
four engagement modes (χ 2(3) = 23.756, p < 0.001). Particularly, significantly more re-watching
behaviors are logged in Z2O-Mode and D2O-Mode than in Full-Mode (Z = −2.678, p < 0.01; Z =
−3.431,p < 0.01) and in None-Mode (Z =−3.988,p < 0.001;Z =−4.504,p < 0.001), thusH9c andH9d
are both accepted. Moreover, there is no significant difference in re-watching frequency between
Z2O-Mode and D2O-Mode, but the significance is found between Full-Mode and None-Mode (Z =
−2.723, p < 0.01).

From the qualitative analysis, we can identify that the gradual progress of robots in Z2O-Mode
stimulated most participants’ (41/48) interest in closer inspections. For example, P22 (M, 27) stated
“The robot’s feedback seemed to be different from that of the previous round. I’d like to check it again”.
Similarly, in D2O-Mode, the enhancement of the robot’s engagement and the disorderliness of
action urge most participants (31/48) to review it several times. By contrast, the constant full en-
gagement in the Full-Mode reduces people’s desire to revisit the students’ reactions again. For
example, P27 (F, 25) stated “As I expected, its behavior was the same as the previous round so there
was no need to watch again”. Similarly, the static state of the robot in None-Mode seriously im-
paired most participants’ interest in re-watching. For instance, P30 (M, 24) said “I just wanted to
finish this teaching process as soon as possible”.
This result indicates that users’ engagement will be affected by the AI system’s engagement.

Therefore, designers can engage users by adapting the expression of AI engagement. We should
also note that AI’s engagement communication could seriously affect the interaction workflow.
For example, users reduced the number of re-demonstrations due to their overestimation of the
learning progress of the robot that showed a high engagement (e.g., robots in Full-Mode), which
may prevent the robot from obtaining enough demonstrations. Hence, designers are advised to
carefully consider the associated impact on user engagement, interaction dynamics, and task out-
comes when designing AI system engagement.

5.3.2 Timing and Motivation of Re-Demonstration and Re-Watching Behaviors. We also analyze
the timing and motivation of the re-demonstration and re-watching behaviors. Overall, there are
different timing patterns of re-demonstration and re-watching in different engagement modes,
and we can find corresponding motivations under participants’ behaviors from their qualitative
feedback. The details of the results are provided in the online Appendix.2

5.4 Order Effect on Users’ Perceptions

Finally, we would like to investigate further whether the order of the engagement mode will affect
users’ overall perceptions of the robot and the RLfD process (users’ subjective ratings in the post-
task questionnaire). Overall, from the results, we can find that the order of engagement mode does
not have significant effects on participants’ perceptions except for several aspects. Although we
have carefully considered and balanced the order effect in our study design, we believe that our
further explorations will benefit the future design of robots’ behaviors.
Specifically, to explore the potential differences, we treated the engagement mode orders,

1234, 2341, 3412, 4123 (1:Z2O-Mode, 2:D2O-Mode, 3:Full-Mode, 4:None-Mode) as the independent
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variable, and took participants’ ratings of each engagement mode in each question as the
dependent variable (e.g., ratings of Z2O-Mode in Q1). Kruskal–Wallis test results show that there
is no significant difference in most questions, except for (1) users’ ratings of None-Mode in Q1

(χ 2(3) = 12.920, p < 0.01), (2) users’ ratings of Full-Mode in Q3 (χ 2(3) = 15.162, p < 0.01), (3) users’
ratings of None-Mode in Q3 (χ 2(3) = 12.418, p < 0.01), and (4) users’ ratings of None-Mode in
Q7 (χ 2(3) = 10.305, p < 0.05). Overall, we found the differences were driven by the participants’
comparisons between the models. If participants taught the robot in Z2O- or D2O-Mode first,
followed by robots in Full- and None-Mode, they tended to have lower perceptions of the latter.
We can get more specific reasons from post-hoc comparisons using Bonferroni correction com-

bined with participants’ feedback. Post-hoc tests show that in Q1: users’ perceptions of the ac-

ceptability of robots’ behaviors, user’s ratings of None-Mode in order 4123 were significantly
higher than in order 1234 (p < 0.05), order 2341 (p < 0.01). Qualitative feedback showed that af-
ter seeing the robot in Z2O-Mode or D2O-Mode, participants thought the robot’s behaviors in
None-Modewere neither appropriate nor acceptable. For example, P14 (female, age: 32, order 2341)
mentioned “The lack of feedback from this robot is incomprehensible compared to the previous ones”.
Besides, post-hoc tests using Bonferroni correction show that in Q3: users’ perception of

robots’ potential of further improvement given more demonstration, user’s ratings of Full-
Mode in order 1234 were significantly lower than in order 3412 (p < 0.05), order 4123 (p < 0.001).
For example, in order 1234, P32 (F, 25) stated that “After teaching students who can make progress
(in Z2O-Mode and D2O-Mode), I felt that this student’s learning ability was relatively weak, so I didn’t
think the possibility of its further improvement is high”. Also, users’ ratings of None-Mode in order
2341 were significantly lower than in order 4123 (p < 0.05). Besides, users’ ratings of None-Mode
in order 1234 were significantly lower than in order 4123 (p < 0.05). (In order 4123) P21 (M, 25) ex-
plained “The first robot I taught was the motionless one (in None-Mode), and I thought that although
this robot was not engaged, probably it might make progress. But after teaching the later robots, I
regretted that I didn’t give the lowest score to the first robot directly”. (In order 1234), P27 (M, 25)
mentioned “In the first round, I thought Banana (the robot in None-Mode) was the same as Apple (the
robot in Z2O-Mode) that could gradually follow my motions in the next rounds although did not move
at the first round. However, Banana still didn’t show any movement after that, so I sharply lowered
my expectation of it”.
In addition, post-hoc tests using Bonferroni correction show that in Q7: users’ willingness

to teach the robot in the future, user’s ratings of None-Mode in order 4123 were significantly
higher than in order 2341 (p < 0.05). Participants were less willing to teach robots in None-Mode
if they had taught a robot in other modes (e.g., D2O-Mode or Full-Mode). For example, P1 (M, 25,
order 2341) said “Teaching the first two active robot students gave me a sense of accomplishment in
teaching. However, when teaching the last one, I just felt like I was teaching in vain”.
These findings suggest that contrast in the behaviors of different AI systems can affect users’

perception to a certain extent, which is consistent with the theory of order bias [144] or anchoring
bias [27, 187]. On one hand, when designing the interaction between humans and AI systems, the
representation of AI system behavior should take contextual information into account (e.g., user
feedback in the previous round of interaction, their past experience with a similar system), to avoid
users’ over- or under-estimation of the current AI services due to comparison [27]. On the other
hand, designers can also take advantage of the subtle influence of contrast on user perception to
implicitly calibrate users’ perception of the AI system and improve their experience.

6 DISCUSSION

In this section, we first discuss some key implications for robots’ engagement design in RLfD sce-
narios and summarize possible design considerations for the engagement expression of AI systems
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in human-AI interaction based on our results and findings. Then, we identify several limitations
of our work. Finally, we discuss future research opportunities in robot engagement design.

6.1 Implications

6.1.1 RLfD should be a Mutual Process Instead of a Monodrama. Our findings reveal that in
RLfD, robots lacking instant reciprocal feedback can mislead and demotivate their instructors. In
human–human teaching, appropriate feedback can help teachers master students’ learning status
and make corresponding adjustments [107]. Otherwise, they may lack passion and motivation in
teaching [110, 148]. Our experiments reveal similar findings in human–robot teaching. Results in
Section 5.2 show that robots in None-Mode will lead to human teachers’ incorrect perceptions
of robots’ intelligence and potential for further improvement. Moreover, not seeing robots’ feed-
back can lower humans’ confidence in their demonstrations and make participants bored and not
willing to give further teaching. In comparison, robots with engagement expressions are more ap-
preciated by participants. Therefore, it is recommended to integrate appropriate robot feedback,
e.g., engagement, during the demonstration stage for human instructors.

6.1.2 Robot Feedback Design should Avoid Introducing Misperception. From the results of our
user study, we have learned that if the robot feedback is not appropriately designed, it may lead
to users’ misperceptions of the robot. Specifically, based on our findings, we summarize several
insights into generating and expressing proper feedback while a robot is learning a skill from hu-
mans. First, it would be better not to show behavioral cues very similar to the target action as
feedback signals. Our pilot study (Section 3.3.2) results show that people are likely to misinterpret
the robot’s engagement as its actual learning outcome otherwise. Second, it is essential to help
users maintain accurate mental models of the robots by responsible engagement expression de-
sign. Designers should match the expression of the engagement of a robot with the actual state
of its underlying algorithm/model to calibrate users’ perceptions and expectations. On one hand,
designers are recommended to be careful about the possible impact of excessively positive robot
engagement on users. For example, if the engagement level displayed by the robot is significantly
higher than its actual internal state (e.g., the Full-Mode), the user might overestimate the ability
of the robot with overly high expectations, which may cause insufficient demonstration. On the
other hand, designers are also suggested to avoid the impact of excessively negative (or no) en-
gagement. For example, if the engagement level of the robot is significantly lower than the level
of its actual state (e.g., the None-Mode), users will underestimate the capabilities of the robot and
even give up further teaching, resulting in negative consequences. Third, the design should allow
users to draw visual/mental associations between the robot’s feedback and the task at hand. If the
robot exhibits completely unrelated behaviors in reaction to people’s teaching, it may be deemed
impolite and consequently evoke negative emotions in humans [57, 151]. For example, from the
interview in Section 5.2, some users said that the random movement of the robot (in D2O-Mode)
at the beginning made them feel uncomfortable. In summary, when designing appropriate robot
learning feedback in RLfD, it is necessary to take the task to teach, the actual learning state behind
the robot, and users’ experience into consideration.

6.1.3 Engagement as a Design Material for Transparently Communicating the Internal Status of

AI Systems. Some previous work has found that users will update their mental models based on the
directly displayed status of the AI system in the form of visualization or text [197]. Our findings
extend this understanding and demonstrate that users will also update their mental models of
robots’ learning status based on the conveyed level of their engagement—a common social cue
in human–human interaction—linked to the learning progress of their backend AI models. The
finding is in line with several well-known HCI theories and frameworks [125–127], indicating that
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not only for conveying the internal status of robots, but engagement can also serve as a potential
design material to expand the existing design space for improving the transparency of other types
of AI systems. The application and effect of engagement design for general AI systems beyond the
RLfD setting can be explored in future work.

6.1.4 Design Recommendations for Engagement Expressions of AI Systems. In general, the de-
sign of engagement expressions needs to be determined according to the specific user interaction
modality, the interaction behavior, the form of the AI system, and the contexts. Based on our key
findings learned from robot engagement design, we outline some design considerations for gen-
eral engagement communication of AI systems. First, the engagement displayed by the AI system
should be closely related to the user’s interactive behavior under the ongoing task (e.g., humans’
body movements in our case). Engagement with irrelevant information may confuse or distract
users. Second, the AI system should maintain the role of “receiver” or “listener” to avoid causing
interference when the user is inputting into the system. It, however, could provide active, non-
interruptive feedback in the process (e.g., robots’ gaze following and rhythm synchrony in our
case). Third, the engagement expression of an AI system should be adaptive based on the system’s
dynamic inner status. Static engagement expressions could impair the update of users’ mental
models. Finally, the engagement of AI systems can be designed to simulate the exchange of en-
gagement cues as in human–human interactions. It has been shown that people will intuitively
ascribe intentionality to systems as they do to humans, and naturally apply the same social heuris-
tics used for human interactions to systems [32, 123]. According to the participants’ feedback in
our user study, it is natural for them, especially those non-experts in robotics and AI, to treat
robots as human students. Based on this phenomenon and HCI theories such as CASA [123], we
can design appropriate engagement expressions for AI systems according to the common social
behaviors in interpersonal interaction.

6.2 Limitations

There exist several limitations in our current implementation and experiment setting. First, our
study was conducted in a simulated environment. Although it has been verified that a robot’s in-
ternal status could be effectively conveyed to users via on-screen display and users’ interpretations
from on-screen robot were consistent with the physical robot [81, 177, 178, 193], there are still some
differences between interacting with a physical robot and seeing it on a screen [76]. We plan to
carry out an in-the-wild RLfD study with physical robots in the future and will take real-life fac-
tors, e.g., distraction caused by the noise of robot movements, into design consideration. Second,
we experimented with the most common learning process of robots in RLfD, i.e., the learning state
is getting better and better with more training iterations. However, it should be noted that not all
training processes guarantee improvement towards the intended goal, and we will explore users’
perceptions under different situations of learning processes, such as failure in teaching. Third,
we adopt a linear mapping between algorithmic learning progress and engagement expression,
which is intuitive for human teachers. However, we also see the possibility of non-linear mapping
between learning status and engagement level, which can be user-specific based on modeling of
users’ patience, users’ experience in teaching robots, users’ teaching interest, and so on. In the
future, we plan to design experiments to test user-adaptive non-linear mapping between learning
status and engagement level. Moreover, this article only focuses on the communication of learn-
ing status during the demonstration gathering stage. As shown in Figure 1, users could also get a
sense of the learning performance by having the robot showcase its learning outcome at the end
of the policy-deriving stage. We will study the means to combine these two types of transparency
communications.
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6.3 Future Research Opportunities

This article is the first step to computationally design Learning Engagement to improve trans-
parency in robot learning from human demonstrations. There are several valuable directions for
further investigation.
Exploring other Learning Engagement Design. The proposed two Learning Engagement modes,

Z2O-Mode and D2O-Mode, are only two representatives of many possible design alternatives to
show the robot learning status. Besides eye gaze and rhythm, there are other engagement cues
worth exploring, such as nodding [96], scratching head, leaning, and changing the distance be-
tween robots and humans, as long as the design is consistent with the common behaviors in
human–human teaching and learning [29].

Extending the proposed method to other types of robots and LfD tasks. In this article, we lever-
age gaze and upper body movements to convey learning engagement given the form factor of
the Pepper robot. And this article emphasizes low-level, skill-oriented robot learning tasks. High-
level, goal-oriented LfD tasks that aim to solve a given problem (e.g., order coffee using mobile
app [101]) are also common in our daily life. Compared with skill-oriented tasks, in goal-oriented
tasks, people care more about the completion of the final goal where it may not be enough to ex-
press engagement only through the gaze and body movements of the robot. Next step, we plan to
extend the proposed methods to non-humanoid-shaped robots and goal-oriented tasks.
Considering the diversity of user perception. Our experiment shows that, although users tend

to have a similar mental model about a robot learner under the same engagement mode, their
attitudes and reactions can be quite different. For example, some participants think that the random
movement of the robot in D2O-Mode is a sign of the robot’s liveliness and intelligence, while some
participants worry about the robot’s “disobedience”. This reminds us of the existence of individual
differences in user beliefs and preferences in the teaching process. In other words, one should
consider users’ differences by modeling their personality and cognitive processes, when designing
behaviors of AI systems.
Extending to more general human-AI interaction scenarios. This article has shown the potential of

communicating AI agents’ inner states through engagement expression. In the next step, we plan
to apply the method proposed in this article to the more general human-AI interaction scenarios
where users interact with more common AI systems (such as GUI-based systems). In addition, we
also hope to explore more engagement expression methods under different interaction scenarios
and different forms of AI systems based on the theoretical support of sociology and psychology.

7 CONCLUSION

In this article, we investigated a new approach to making robots’ learning status transparent by
modeling adaptive expressions of robot engagement. We proposed and verified the design of at-
tentional and behavioral engagement expressions, Gaze Following and Rhythm Synchrony. And
we computationally incorporated the robot’s internal learning status into these engagement cues,
which results in the Z2O-Mode and D2O-Mode of Learning Engagement for communicating dy-
namic learning progress. We conducted an online user study in a simulated environment to in-
vestigate the effects of different engagement modes on users’ mental models of robots’ learning
process and users’ perception of the overall teaching process. Quantitative and qualitative results
showed that different engagement expressions led to different human perceptions of robots’ learn-
ing status/progress, expected learning outcomes, intelligence, and acceptability, and affected users’
self-assessment, self-reflection, teaching experience, and engagement. Based on our findings, we
provided implications for both human–robot teaching and broader human-AI interaction.We hope
this work serves as a starting point for making the inner status of AI systems transparent for non-
expert users via engagement expression.
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