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ABSTRACT 
Multi-step retrosynthetic route planning (MRRP) is the core task in 
synthetic chemistry, in which chemists recursively deconstruct a 
target molecule to fnd a set of reactants that make up the target. 
MRRP is challenging in that the search space is vast, and chemists 
are often lost in the process. Existing AI models can achieve auto-
matic MRRP fast, but they only work on relatively simple targets, 
which leaves complex molecules under chemists’ expertise. To facil-
itate MRRP of complex molecules, we proposed a human-AI collab-
orative system, RetroLens, through a participatory design process. 
AI can contribute by two approaches: joint action and algorithm-in-
the-loop. Deconstruction steps are allocated to chemists or AI based 
on their capabilities and AI recommends candidate revision steps to 
fx problems along the way. A within-subjects study (N=18) showed 
that chemists who used RetroLens reported faster MRRP, broader 
design space exploration, higher confdence in their planning, and 
lower cognitive load. 
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1 INTRODUCTION 
The synthesis of chemicals is central to chemistry [67] with applica-
tions in many felds (e.g., drug discovery). For example, the National 
Institute of General Medical Sciences puts about 44.3 million dollars 
on chemical synthesis per year1. A critical step towards the suc-
cessful and efcient synthesis of chemical molecules is to identify 
feasible synthetic routes. Multi-step retrosynthetic route planning 
(MRRP) is one of the most widely used methods to design synthetic 
routes for the target molecules [7, 56]. It refers to recursively de-
constructing a target molecule into its simpler precursors following 
a reversed chemical reaction until reaching a set of commercially 
or readily available molecules as starting materials [20]. Then the 
synthetic route for the target molecule can be obtained by reversing 
the derived retrosynthetic routes from MRRP. 

Chemists typically rely on their prior knowledge, practical ex-
perience, and intuition to guide MRRP [56, 73]. Still, manually de-
signing multi-step retrosynthetic routes is hard work for chemists 
(Figure 1). On the one hand, thousands of reactions can possibly 

1https://www.nigms.nih.gov/about/budget/CJs/Documents/cj2015.pdf 
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Figure 1: Human-only MRRP process 

(a) The entire process of joint molecule deconstruction (left) and the task allocation method at each step of molecule deconstruction (right). Step (A) shows an example of: 1) product 1 
is within the scope of AI’s capability and the chemist chooses to adopt an AI-generated route; 2) product 2 is within the scope of AI’s capability but the chemist chooses manual 
deconstruction at this step; 3) product 3 is beyond the scope of AI’s capability. 

(c) The whole MRRP process with 
(b) AI-assisted revision step selection RetroLens 

Figure 2: Illustration of the two forms of human-AI collaboration in RetroLens and the whole MRRP process with RetroLens. 

produce the intended molecule at each step [75], which requires not be immediately obvious [72]. Chemists often fail to realize in 
an enormous knowledge base to identify good candidates. Even time that they have made a wrong decision. When they fnd that 
experienced chemists need to search and integrate similar reaction the route under construction is unsuccessful after several steps, it 
precedents from existing works to fnd feasible candidate reactions is difcult, if not impossible, for chemists to locate the step(s) they 
[26]. Repeating such database and literature search at each step made mistakes [29]. Furthermore, even if chemists can identify 
of MRRP makes the entire process time-consuming and tedious. It which reactions they choose may have caused the route failure, 
usually takes weeks to plan a retrosynthetic route for a single mol- they still need to evaluate the trade-ofs among a set of candidate 
ecule [32]. On the other hand, since MRRP is a multi-step problem, revision steps with multiple objectives [82]. For instance, chemists 
the consequence of a particular deconstruction choice at a step may not only hope to minimize the amount of revisions they have to 
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make to fx the problematic route but also tend to modify the steps 
they are relatively less confdent about. 

To assist chemists in MRRP, an increasing number of AI-powered 
methods have emerged [21, 34, 79, 100]. These AI models can auto-
matically conduct MRRP based on large-scale knowledge bases and 
have been shown to ofer more comprehensive plans faster than in-
dividual chemists [46]. However, these technologies are still limited 
in their capabilities to handle structurally complex molecules that 
are not well-studied [23] (e.g., natural products which usually have 
complex scafolds [4]). This is because little related synthetic route 
data are available for AI model training to predict the retrosyn-
thetic routes of complex molecules [8]. Also, the routes of such 
molecules are generally long, leading to explosive design space 
and planning complexity [15]. Furthermore, as AI algorithms only 
consider the theoretical synthesis possibility and cannot take into 
account practical factors (e.g., experimental conditions of individual 
researchers or labs), their recommended routes may not be feasible 
in subsequent chemical experimentation [84]. In these cases, the 
AI-generated routes, if any, would be unusable and the MRRP still 
needs to be carried out by human experts. 

While AI cannot retrosynthetically analyze complex molecules, 
it may take the weight of the shoulders of chemists in the MRRP 
process when the target molecule becomes simple enough after 
a series of manual deconstructions. When the complexity of the 
product(s) (i.e., the molecule(s) to be deconstructed) at a step of 
MRRP falls within the scope of AI’s capability, AI is likely to out-
perform chemists in handling these molecule(s) and can share the 
workload of the remaining steps of MRRP by automatically gener-
ating retrosynthetic routes of the products. Unfortunately, existing 
human-AI collaborative work often focuses on single-step problems 
(e.g., deceptive review detection) [51] and provides little guidance 
on when humans should hand tasks over to AI in such dynamic, 
multi-step problems. Also, there is still limited knowledge on how 
AI can help backtrack and locate possible causes of failure and 
suggest candidate revisions when humans make mistakes. 

In this paper, we proposed RetroLens, a human-AI collaborative 
system (Figure 2) that facilitates chemists and AI to collaborate 
with each other on MRRP for complex molecules. Specifcally, our 
proposed system integrates two forms of human-AI collaboration: 
joint action (i.e., a group works together like a single agent towards 
a shared goal; Figure 2(a)) [3, 106] and AI-assisted decision-making 
(i.e., AI informs human and human makes fnal decisions; Figure 
2(b)) [31, 50]. First, when given a target molecule, chemists and 
AI have equal partnerships and would do the same type of tasks, 
namely analyzing and identifying the possible deconstructions of 
the input molecule – candidate reactions that can generate this 
molecule – at a given step of MRRP. The deconstruction tasks are 
allocated to humans or AI based on their capabilities and limita-
tions. In particular, we communicated with six expert chemists to 
decide what kinds of molecules cannot be well analyzed retrosyn-
thetically by existing AI solutions. If the product(s) of a step are 
such molecules, chemists should perform the deconstruction at this 
step manually. Otherwise, based on their preferences, chemists can 
choose manual deconstruction at the step or employ an AI model to 
automatically fnish the MRRP of the product(s) at the current and 
remaining steps. Upon the completion of the initial retrosynthetic 
route, chemists may fnd that the output path has problem(s) (Figure 

2(c)). For example, the route may not start with readily available 
molecules or chemists may think that some molecule(s) are not us-
able as they are too expensive or hazardous. To solve the problems 
in the route, AI plays an assistive role to chemists by suggesting 
candidate steps to fx. More specifcally, we designed a pipeline 
for AI to 1) locate the possible manual step(s) that ultimately lead 
to each problematic molecule and 2) rank these potential revision 
steps based on multiple criteria that can be customized by chemists. 
Finally, human experts will make the fnal decision and perform the 
route revision according to their selected solution. We conducted a 
within-subjects user study with 18 chemistry researchers to evalu-
ate the efectiveness of RetroLens. Results showed that compared 
with manual MRRP, joint molecule deconstruction helped chemists 
explore a broader design space. The two forms of human-AI collab-
oration together supported chemists to achieve faster MRRP, boost 
their confdence in the fnal planning, and lower their cognitive 
load. 

In summary, the main contributions of this paper are: 
(1) A Human-AI collaborative system, RetroLens, which inte-

grates two forms of human-AI collaboration to support MRRP 
for complex molecules. 

(2) A user study to evaluate how RetroLens impacts chemists’ 
MRRP process, user experience, and perceptions of such 
human-AI collaborative system. 

(3) Design considerations and opportunities for human-AI col-
laborative systems to better support MRRP and other multi-
step problems. 

2 RELATED-WORK 

2.1 Multi-step Problem Solving 
Multi-step problems have diferent defnitions depending on the 
meaning of a “step”. At a macro level, a step refers to an iteration 
of the whole process, and multi-step problems are those that re-
quire multiple iterations of solution construction to tackle. Previous 
work mainly helps solve such problems by prompting users on what 
needs work in the next iterations or helping humans to elicit guid-
ance and feedback in the iterative process. For example, Zhang et 
al. designed a collaborative itinerary planning system, Mobi, which 
could check whether users’ requirements are violated so that crowd 
participants could contribute to the iterative planning process ap-
propriately based on current needs [103]. Similarly, Chilton et al. 
proposed a web application which provided actionable feedback 
on progress towards the global constraints on session creation to 
guide the iterative conference organization process [17]. Moreover, 
Louie et al. developed AI-steering tools enabling novices to direct 
the music generation model to iteratively create music [58]. 

At a micro level, a step refers to the smallest action or decision 
unit in the solution construction process which can be called cor-
rect or incorrect [90], and multi-step problems under this defnition 
are those that require multiple units of decision-making within 
a single pass of solution construction (e.g., combinatorial games, 
programming). In this paper, we focus on this micro-level defnition 
of multi-step problems which are underexplored in the human-AI 
collaboration area. Traditionally, solutions to such problems can 
be explored using heuristic search algorithms, such as Monte Carlo 
tree search (MCTS) [47, 98]. For example, Guillaume et al. applied 
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MCTS to enable computers to automatically play Go as human 
players. With the development of AI, some works began to apply 
deep learning (DL) models to solve this kind of multi-step problems. 
For instance, Silver et al. applied several machine learning (ML) 
algorithms (e.g., reinforcement learning) to MCTS and developed 
AlphaGo, which outperformed humans in the Go game [80]. How-
ever, in these scenarios, the number of solutions at each step is 
limited and certain, whereas there may be thousands of deconstruc-
tion choices at every step in MRRP. Thus, existing AI algorithms 
have not worked well on MRRP due to the complexity and large 
design space and require heavy involvement from chemists. An 
increasing amount of research has been done to provide problem 
solvers with post-hoc analysis on their problem-solving behavior 
and facilitate their operations (e.g., backtracking, reverting) during 
the multi-step problem solving process. For example, Wang et al. 
displayed diferent problem-solving patterns by visualizing users’ 
sequences of intermediate steps of programming exercises in fow 
diagrams [94]. Kang et al. presented a prototype, AnalyticalInk, 
which modeled students’ problem-solving directions as directed 
acyclic graphs and contrasted their solutions with the correct solu-
tion to tutor students to solve math problems [41]. Nevertheless, 
little work has investigated how to foresee the consequences after 
several steps stemming from the decisions that problem solvers 
have made. 

2.2 Multi-criteria Decision Making (MCDM) 
MCDM refers to making decisions based on multiple criteria [99]. 
Prior studies have proposed many algorithms to rank the candi-
dates base on multiple criteria to facilitate MCDM. One of the most 
commonly used algorithms is simple additive weighting (SAW) 
[102]. It represents the importance of given criteria with weights, 
computes a SAW score based on the summation of the weighted 
criteria values, and ranks candidates accordingly. To support user-
centric decision-making, interaction and visualization techniques 
have been widely applied to help users explore candidates based 
on multiple criteria. For example, Gratzl et al. designed LineUp, 
which allows users to interactively customize the criteria weights 
for ranking and uses stacked bar charts to illustrate the efects of 
diferent sets of criteria on the fnal ranking [30]. WeightLifter vi-
sualized the sensitivity of the criteria weights, enabling users to 
efciently explore diferent weight spaces [68]. To facilitate MCDM 
in the real world, Weng et al. proposed a visual analytics system 
to assist people in searching for an ideal home based on multiple 
reachability-centric criteria [99]. To solve the problem that users 
may not have a clear understanding of the importance of some 
criteria to a decision, Wall et al. applied RankingSVM, which is a 
widely used ML algorithm for ranking tasks, to infer users’ prefer-
ences based on their previous ranking behavior [92]. Additionally, 
some empirical research has been conducted to understand the 
diference between various MCDM supporting strategies. For in-
stance, Kuhlman et al. investigated the impact of diferent user 
preference collection methods, including sub-list ranking, categori-
cal binning, and pairwise comparisons, on users’ decision-making 
process and found that the categorical binning technique enabled 
users to explore larger data space than the other two approaches 

[49]. Chan et al. studied the benefts and drawbacks of designer-
led and optimization-driven designs in supporting the trade-ofs 
between multiple design objectives. They found that with an op-
timizer, designers could obtain better solutions but felt a lower 
sense of engagement and expressiveness [14]. However, compared 
to scenarios in these studies (e.g., choosing ideal homes), MCDM 
for candidate revision steps in our work is more complicated. In 
particular, since MRRP is a multi-step problem, when choosing 
revision steps, chemists must consider not only the attributes of 
each individual candidate step but also their efects on the entire 
retrosynthetic route. 

2.3 Human-AI Collaboration 
Recent works have emphasized the importance of studying human-
AI collaboration which describes the interactions between humans 
and AI. Three common forms of human-AI collaboration have been 
explored by researchers. First is AI-assisted decision-making, in 
which AI works as an assistant to provide decision recommenda-
tions while the fnal decision is made by humans [6, 104]. Several 
studies examined how people perceive and interact with the AI 
assistant. For example, Cai et al. investigated the onboarding needs 
of medical practitioners in their collaboration with diagnostic AI 
assistance [13]. Zhang et al. examined the efect of showing conf-
dence value and explanation of AI prediction on human’s perceived 
accuracy and trust in AI [104]. These studies pointed out that peo-
ple often used AI assistance in unexpected ways and highlighted 
the importance of helping users understand AI’s recommendations 
and correctly judge the reliability of AI. 

Human-in-the-loop is an interactive training paradigm where 
the performance of AI can be improved based on human input. For 
example, Lee et al. designed a human-AI collaborative approach 
that allows therapists to identify weaknesses of the clinical decision-
support AI by reviewing its output and provide feedback to improve 
AI [54]. Interactive ML also falls in this category, in which people 
are involved in the prediction process of AI models to improve the 
performance of AI [24, 25, 60, 61, 65, 86]. 

The third form of human-AI collaboration, joint action, refers 
to humans and AI working together towards a shared goal and 
acting as a single agent [3, 106]. Related work mainly studied the 
appropriate task allocation between humans and AI. For example, 
Lai et al. used deceptive review detection as a testbed, proposed a 
spectrum of allocation schemes ranging from full human agency 
to full automation, and divided work between human and AI ac-
cordingly [51, 52]. Mackeprang et al. designed a method based on 
a levels-of-automation framework to facilitate humans to fnd an 
optimal task allocation between humans and AI [63]. Lai et al. used 
content moderation as a case and proposed a novel paradigm of 
human-AI collaboration, conditional delegation. In this scheme, 
humans and AI together specify a trustworthy region within which 
AI’s output is reliable, and the cases within this region are delegated 
to AI [50]. 

A common limitation of existing work is the focus on single-step 
problems, e.g., content moderation, where humans only need to 
make a fnal decision, not on multi-step problems, which require 
people to make a sequence of decisions to reach the fnal outcome. 
Moreover, although prior studies proposed various task allocation 
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mechanisms between humans and AI, they were mostly limited to 
providing guidance for the division of pre-defned tasks. Little work 
explored when humans and AI should hand over to one other in the 
dynamic environments of multi-step problems where pre-planned 
task delegation is impossible. To our knowledge, our work is the 
frst study to extend human-AI collaboration to multi-step problem 
solving and integrate multiple forms of human-AI collaboration to 
support a single decision-making problem. 

2.4 Retrosynthetic Route Planning (MRRP) 
Existing AI-driven methods for MRRP can be categorized into 
template-based and template-free. Template-based methods plan 
retrosynthetic routes based on known reaction rules extracted 
from reactions reported in prior publications [7, 71, 76]. These 
approaches could efectively predict retrosynthetic routes for the 
molecules similar to those in the training data, but could not per-
form well on the prediction of unfamiliar reactions [79]. Template-
free methods conduct MRRP utilizing DL models. Prior work typ-
ically treated deriving chemical reactions as a natural language 
processing problem, in which reactants and products at a step of 
a route were encoded as textual strings and the reaction can be 
regarded as a set of strings (reactants) being transformed into an-
other (products) [42, 57, 87]. These AI-driven MRRP models have 
been limited to relatively simple target molecules so far, and no al-
gorithm has been designed for complex targets, which have longer 
retrosynthetic routes and fewer reaction precedents that can be 
relied on [64]. 

3 PARTICIPATORY DESIGN PROCESS 
To understand chemists’ common practices and needs in MRRP for 
complex molecules and to form the design requirements and choices 
of our proposed human-AI collaborative system, we adopted an 
iterative participatory design approach. 

3.1 Participants and Procedure 
We brought six experts (E1-E6) in the feld of chemistry to each 
phase of our iterative design process (Table 1). They all often per-
form MRRP in their research and have abundant MRRP experience. 
Our design process started with a two-hour semi-structured forma-
tive interview with each expert. We asked about their experiences 
of MRRP for complex molecules, including but not limited to their 
planning process and strategies, what kind of AI services, if any, 
they have used to analyze the retrosynthesis of molecules of inter-
est, how they interacted with and perceived such services, and what 
challenges they faced during the planning process. Moreover, we 
asked the experts about their methods to solve the problems that 
cause MRRP to fail. The interview questions mainly covered how 
they locate the steps of deconstruction possibly resulting in route 
failure and how they choose efective revision methods. Through a 
thematic analysis [10] on experts’ feedback by two authors of this 
paper, we derived a set of design requirements for potential human-
AI solutions. Based on these requirements, we designed an initial 
version of a human-AI collaborative system supporting chemists 
and AI to design retrosynthetic routes for complex molecules to-
gether. We also proposed a pipeline to recommend revision steps 
for chemists when they fnd problems in the current routes. Then 

we carried out bi-weekly meetings with these experts for four 
months. We invited them to refect on and co-design our system 
iteratively, ensuring that our updated implementation meets the 
design requirements and addresses new questions that emerged 
in the design process. Specifcally, the experts contributed to the 
design of task allocation between chemists and AI, the pipeline to 
locate candidate revision steps, the criteria that chemists usually 
focused on to select ideal revision steps, and the interface of the 
system. We present the technical and design details of the fnal 
system in Section 4. 

3.2 Insights from Formative Interviews 
In this subsection, we summarize the key insights from the forma-
tive interviews. 

All participants acknowledged that MRRP of complex molecules 
was challenging and time-consuming. E2, E5 and E6 reported that 
one main obstacle in this process was the difculty in searching 
and integrating the information associated with molecule 
deconstruction. For each product at every step of MRRP, chemists 
need to comprehensively review the reaction precedents of the 
product from existing work to determine its deconstruction. Al-
though current chemical data search engines (e.g., SciFinder2) can 
help collect related information from various online resources, it is 
still strenuous for chemists to repeatedly integrate and make sense 
of the large-scale search results. AI-powered MRRP supporting 
platforms (e.g., AiZynthFinder [28]) can alleviate these challenges 
to some extent since AI models can automatically predict molecule 
deconstruction based on large-scale reaction databases. But E3 and 
E5 refected that they still needed to manually draw and input all 
products in the route, typically more than 10 or even 20, into the 
platforms one by one. E2 added that it was challenging for them 
to distinguish what kinds of molecules should be delegated 
to AI to improve the efciency of MRRP. “Sometimes I drew 
and input molecules to AI-powered platforms but fnally found the 
molecules were too complex for AI to process, which was a waste of 
time” (E2). 

In addition, all experts reported that they often failed to realize 
in time that they had made wrong deconstruction choices. 
They pointed out that they usually could realize their mistakes 
only after several steps when they found that some resulting prod-
uct(s) could not be further deconstructed or did not satisfy their 
requirements (e.g., the products could not be processed with their 
laboratory resources). For example, E4 shared a personal experience 
that he once chose an inappropriate deconstruction of a product at 
the second step of a retrosynthetic route, but he was not aware of it 
until he failed to decompose a product at the tenth step. This issue 
not only leads to a substantial waste of time and eforts but also 
increases the difculty in backtracking and locating the problematic 
steps. Thus, the experts hoped AI to help them realize their wrong 
deconstruction decisions earlier. 

Furthermore, all experts mentioned that the frst rounds of MRRP 
were often unsuccessful due to the planning complexity. As a result, 
they need to iteratively revise the routes several times. They all 
complained about the difculty of locating the possible causes 
of the problems in retrosynthetic routes and deciding the 

2https://scifnder.cas.org 

https://2https://scifinder.cas.org
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Table 1: Demographics of all participants in the participatory design process, including each participant’s ID, gender, age, 
research area, research experience (number of years), and title. 

ID Gender Age Research Area Exp. Title 
E1 Male 33 Medicinal Chemistry 9 University professor 
E2 Male 31 Medicinal Chemistry 8 Postdoc 
E3 Male 28 Organic Synthesis 8 Postdoc 
E4 Male 27 Computer-aided Drug Design 5 PhD 
E5 Male 28 Computer-aided Organic Synthesis 5 PhD 
E6 Female 28 Computer-aided Organic Synthesis 5 PhD 

ideal revision step(s) to solve the problems. For each step with 
a problematic product, chemists would backtrack the previous steps 
on the path to identify the reaction(s) that potentially caused the 
occurrence of the product and regard them as the candidate steps 
to revise. E1, E3 and E6 commented that if several problems existed 
in the route, identifying the revision steps that could solve all issues 
was particularly difcult, especially when the route was complex – 
“long” (E6) or “containing many branches” (E1). For example, E3 said 
that in addition to trying to solve the problems one by one, he would 
also consider whether he could tackle multiple problems by modify-
ing a single revision step (e.g., revising the step at the intersection 
of all the branches containing undesired molecules) to save his 
time and eforts in route modifcation. Hence, they suggested that 
it would be helpful if our system could assist in identifying possible 
revision steps that can solve all problems in the route. Moreover, 
E3 and E5 brought up the need for AI to recommend revision steps 
based on diferent criteria concerning revision efciency and route 
quality. They expressed that even if they could identify all candidate 
revision steps, they still found it challenging to select the ideal ones 
because they had to comprehensively consider multiple criteria. 

3.3 Final Design Requirements Emerged from 
Iterative Design and Feedback Process 

We present the fnal set of design requirements for a human-AI col-
laborative system to support MRRP for complex molecules which 
contains the initial design requirements derived from the formative 
interview and the new ones identifed in the subsequent design 
iterations. In the design process, we kept using these design re-
quirements in updating to guide our design decisions. 

• R1: The system should reduce repetitive information search 
and integration for molecule deconstruction. 

• R2: The system should identify the scope of AI’s capability 
and allocate molecule deconstruction tasks to chemists or 
AI accordingly. 

• R3: If chemists make wrong decisions during the manual 
molecule deconstruction process, the system should facilitate 
them to become aware of the problems early. 

• R4: When facing failures in retrosynthetic routes, the system 
should automatically identify possible revision steps to fx 
the problems and rank the candidate solutions based on 
multiple criteria set by chemists. 

• R5: The system should allow chemists to customize diferent 
components of the collaborative MRRP process based on 
their preferences and concerns, and AI should keep consis-
tent customization with chemists’ manual analysis. 

4 RETROLENS: HUMAN-AI COLLABORATIVE 
SYSTEM FOR MRRP 

By iteratively co-designing with the experts, we developed a human-
AI collaborative system, RetroLens, to support chemists and AI to 
conduct MRRP for complex molecules together. In this section, we 
describe the system architecture of RetroLens (Figure 3), including 
the mechanisms of joint molecule deconstruction and the pipeline 
for AI-assisted revision step selection. 

4.1 Joint Molecule Deconstruction 
In each step of MRRP, AI frst examines whether an input mole-
cule is already commercially or readily available by checking its 
existence in a purchasable molecule database called ZINC [81]. If 
the molecule is included in ZINC, it does not need to be further ret-
rosynthetically analyzed. Otherwise, it is regarded as a product to be 
deconstructed. The task of MRRP for this product is then allocated 
to the human or AI based on their capabilities and limitations. 

By discussing with the experts (Section 3), we identifed an em-
pirical rule-of-thumb of product deconstruction task allocation 
between chemists and AI (R2). That is, if the number of atoms 
of the largest ring of a molecule is greater than 12, it should be 
deconstructed manually by chemists, as AI models usually cannot 
perform well given such molecule complexity. Therefore, AI would 
frst calculate the number of atoms of the largest ring of each input 
product at the current step using RDKit [53]. The products are 
represented in textual strings composed based on the simplifed 
molecular-input line-entry system (SMILES) [96]. For the products 
whose largest ring contains no more than 12 atoms, AI applies 
the API of IBM RXN3 – one of the most widely used AI-powered 
MRRP tools – to predict their retrosynthetic routes based on their 
SMILES. IBM RXN allows users to specify a set of constraints (Sup-
plementary material) on the output retrosynthetic routes so that the 
generated routes will be consistent with chemists’ manual decon-
structions (R5). Still, the routes generated by AI may fail if they do 
not start with readily available molecules or do not meet chemists’ 
constraints (R3). After reviewing the AI-generated routes of an 
input product, chemists can either directly adopt one of them and 
incorporate it into the fnal plan (R1), or reject all AI results and 
perform the deconstruction by themselves. For other input prod-
ucts that are deemed complex, AI would not carry out the MRRP, 
handing them to chemists for manual processing. 

4.1.1 The Revision Step Identification Module. Following the feed-
back from the experts (Section 3), we frst used RDKit to check 

3https://rxn.res.ibm.com 

https://3https://rxn.res.ibm.com
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Figure 3: The system architecture of RetroLens: (A) the mechanisms of joint molecule deconstruction; (B) the pipeline for 
AI-assisted revision step selection module. 

Algorithm 1 Algorithm to fnd candidate revision steps for a prob-
lematic molecule 

Input: molecule: A problematic molecule that contains a scaf-
fold 
Output: moleculeCandidateList: A list of candidate revision 
steps of the input problematic molecule 

1: procedure GetMoleculeCandidates(��������) 
2: ��������������������� ← [] 
3: �������� ← ��������.������ 
4: while �������� ≠ ���� do 
5: scafoldHasChanged ← ���� 
6: for all �ℎ��� ∈ �������� .�ℎ������ do 
7: if �ℎ���.scafold == �������� .scafold then 
8: scafoldHasChanged ← false 
9: break 
10: if �������� .����������������� AND 
11: scafoldHasChanged then 
12: if �������� .������������� then 
13: ��������������������� ← [] 
14: else 
15: ��������������������� .������ (�������� )
16: �������� ← �������� .������ 

17: return ��������������������� 

whether a problematic molecule identifed in the molecule decon-
struction stage has a scafold (i.e., the core structure of a molecule 
[74]). If not, RetroLens would not suggest any revision steps as such 
a problem can usually be solved by directly modifying the reaction 
that yielded the problematic molecule. 

In other words, our revision step identifcation module mainly 
focuses on the problematic molecules with scafolds (Algorithm 
1) (R4). In these cases, RetroLens would backtrack the retrosyn-
thetic route from a failure position to locate the possible upstream 
steps that lead to it. Since AI can explore and return all possible 
retrosynthetic routes of an input molecule, if none of the AI results 
is acceptable, it is likely that the root issue occurs in the steps man-
ually processed by humans. Therefore, RetroLens only inspects the 
manual steps for revision candidacy. The experts suggested that 
a candidate step for revision must satisfy two conditions (Section 

3): 1) the step is a manual step located before where the problem-
atic molecule appears; 2) the deconstruction reaction at that step 
involves modifcation of the structural scafold. Thus, the identi-
fcation module frst narrows down the manual steps based on 1), 
and then extracts the scafolds of the product and the reactant(s) 
(i.e., the molecules derived by deconstructing the product) of each 
remaining step using RDKit. If all scafolds of the reactant(s) are 
diferent from the scafold of the product, the corresponding step 
would be regarded as a possible site leading to the problematic 
molecule and be added to the candidate revision step pool of this 
problematic molecule. 

If there are multiple problematic molecules in a retrosynthetic 
route, the identifcation module further pinpoints the potential 
revision step(s) to solve all problems together by combining the 
candidate revision steps of each molecule of concern (Algorithm 
2). Diferent problematic molecules may share common candidate 
steps, because these steps are at the intersection of the branches 
containing those problematic molecules. Modifying such a step can 
infuence the production of these molecules. They thus are directly 
regarded by AI as candidate revision steps. For other revision steps 
that are not shared by individual problematic molecules, the identi-
fcation module extracts all possible combinations of them so that 
each combination may collectively solve the problems in the route. 

4.1.2 The Revision Step Ranking Module. Once the identifcation 
module obtains a pool of candidate revision steps for each prob-
lematic molecule, the ranking module would rank these candi-
dates based on a list of criteria derived from the literature review 
[1, 5, 19, 37, 84] and the feedback from the experts (Section 3) (R4). 

RetroLens allows chemists to select the criteria they care about 
for the ranking module from the following list (R5). 

• Amount of revision: the number of revisions chemists 
have to make to fx the problems in the retrosynthetic route. 
Modifying a step that possibly causes the problems may also 
lead to the revisions of the subsequent steps. Chemists are 
usually concerned about how much change each revision 
step will cause on the original retrosynthetic route and hope 
to minimize the amount of revisions they make. For each re-
vision step, we defned its amount of revisions as the number 
of molecules in the subsequent steps of the revision step. 
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Algorithm 2 Recursive function to generate all candidate revision 
step combinations 

Input: molecule: The target molecule of a retrosynthetic route 
candidateList: a list containing all candidate revision steps of 
all problematic molecules that contain scafolds 
Output: candidateCombList: A list containing all candidate 
revision step combinations of the retrosynthetic route rooted 
at molecule 

1: procedure CandidateComb(�������� , ������������� ) 

Shi, et al. 

steps with more reduction of complexity are better and are 
less expected to be revised [84]. Therefore, we frst calculated 
SCScore, an efective measure of molecular complexity in 
MRRP, which ranges from 1 to 5 with 5 as the highest com-
plexity [19], of the product P and reactants {�1, �2, · · · , �� }
at the candidate revision step S. To keep consistent with 
other criteria that the smaller the value of the criteria of 
a step is, the more the step is preferred to be revised, we 
defned a simplicity score similar to existing work [73]: 

2: ����������������� ← [] 
3: if �������� ∈ ������������� then 
4: for all �ℎ��� ∈ ��������.�ℎ������ do 
5: if �ℎ��� ∈ ������������� then 
6: �ℎ�������������������� 
7: ← CandidateComb(�ℎ���, �������������)
8: ����������������� 
9: .������ (�ℎ�������������������� )
10: else if �ℎ���.������������� then 
11: ����������������� ← [] 
12: break 
13: ����������������� 
14: ← ����������������� ����������������� 
15: ����������������� .������ (��������)
16: return ����������������� 

• Reaction confdence: the chemist’s confdence in the de-
construction in the revision step which is chosen in the mol-
ecule deconstruction stage. Among all the candidate revision 
steps, chemists tend to modify the steps they are relatively 
less confdent about. By discussing with the experts, we 
found that the confdence in a manual step is estimated based 
on similar reaction precedents in existing work. Specifcally, 
for each reactant �� (� = 1, 2, · · · , �) at the candidate revisionn o 

(1) (2) ( � )step S, we frst searched the reactants � , � , · · · , � 
� � � 

with a similarity greater than 0.8 to �� and obtain the number n � � � � � �o 
(1) (2) ( � )of them � � , � � , · · · , � � in the United 
� � � 

States Patent Ofce (USPTO), which is one of the most widely 
adopted publicly available reaction dataset containing ap-
proximately one million reactions [15, 77]. We defned � (�� )
as � � � �Í� (� ) (� )

=1 Similarity �� , � × � � 
� � � 

� (�� ) = � �Í� (� )
�=1 � �

� 

to represent the possibility of the existence of �� obtained 
by the deconstruction at step S. Then the confdence in the 
deconstruction choice in step S is calculated as the weighted 
average of {� (�1), � (�2), · · · , � (�� )} with the relative size 
of �� over that of {�1, �2, · · · , �� } as the weight. That is 

�∑ �(�� )Confdence(�) = � (�� ) × Í� 
�=1 �(�� )�=1 

where �(�� ) represents the number of atoms in �� . 
• Complexity reduction: the reduction of the complexity of 
the step’s reactants compared to its product. In MRRP, the 

SCScore(�� ) − 1
Simplicity(�� ) = 1 − 

4 
and defned the complexity reduction of the step S as Î�

�=1 Simplicity(�� )Complexity_Reduction(�) = .
Simplicity(�) 

• Convergence: the number of reactants in the step and their 
relative sizes. The retrosynthetic route should be as branched 
as possible rather than linear [1, 5]. Thus, the more reactants 
there are and the closer their relative sizes are, the more 
convergent the step will be and the less the step should be 
modifed. According to [37], we computed the convergence 
of a candidate revision step S as follows: 

�∑ 1 �(�)
MAE = − �(�� )

� � 
�=1 

1
Convergence(�) = 

1 + MAE 
where �(�) and �(�� ) represent the number of atoms in the 
product and reactants of step S, respectively, and MAE is the 
mean absolute error. 

• Associated branch confdence: the confdence in the asso-
ciated branches (i.e., the sub-routes) under a step other than 
the branches containing the problematic molecule(s). When 
chemists choose to revise a step to fx a problematic molecule 
in the retrosynthetic route, in addition to the branch contain-
ing the problematic molecule, other associated branches will 
also be revised. Hence, chemists hope that the revision steps 
they choose afect the associated branches they are confdent 
about as little as possible. The confdence of an associated 
branch is calculated by multiplying the confdence of all the 
steps contained in the branch. Specifcally, the confdence 
of an AI-generated step is returned by IBM RXN, and the 
confdence of a manual step is computed as discussed in 
Reaction confdence criteria. 

If there is one problematic molecule in the retrosynthetic route, 
we ranked its corresponding revision steps using the SAW algo-
rithm, which is extensively applied in various MCDM scenarios 
[68, 83, 97, 105]. Suppose k criteria are selected by the chemist, we 
denoted the y-th criterion value of the candidate revision step S by 
(� )

� . Then, the SAW score of step S is computed with 
� 

�∑ (� )SAW(�) = �� × �
� 

�=1 

where �� is the weight assigned to the y-th criteria by the chemistÍ
based on his/her preference, the sum of weights � �� = 1, and 
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the value of SAW(�) ranges from 0 to 1. We therefore sort the SAW 
scores of candidate revision steps in ascending order. 

If there are multiple problematic molecules in the route, AI com-
putes the SAW scores of the candidate fxes based on the SAW 
scores of individual revision steps involved. Specifcally, as a step 
S that can simultaneously afect several molecules (Section 4.1.1) 
may have diferent SAW scores as the candidate revision step of 
diferent problematic molecules, the ranking module defnes its 
combination SAW score as the weighted average of these SAW 
scores. The weights are based on the number of molecules in the 
branches of concern under step S. For each of the other revision 
step combinations, the resulting SAW score is the sum of the SAW 
scores of every revision step in the combination. Note that the SAW 
scores of the combinations may be greater than 1 and we did not 
normalize them to guarantee the explainability of AI. In this way, 
users can easily understand that they need to make eforts to revise 
multiple steps if they choose this revision plan. AI displays these 
suggested plans for combined problems in the ascending order of 
their SAW scores. 

5 EXPERIMENTAL DESIGN 
In this section, we present our within-subjects user study design 
to evaluate whether and how RetroLens would infuence chemists’ 
MRRP process. 

5.1 Experimental Conditions 
As discussed in Section 4, our system provides both joint molecule 
deconstruction and AI-assisted revision step selection. To inves-
tigate their efects on MRRP, we compared the following three 
conditions: 

• Manual condition: According to the interviews with ex-
perts (Section 3), it is a common practice for chemists to 
manually plan retrosynthetic routes based on their own 
knowledge and online search. Hence, we used the manual 
condition as the baseline. In this condition, participants were 
allowed to work with any search engines (e.g., SciFinder4, 
Google Scholar) or AI-powered MRRP supporting systems 
they usually use in their routine practices. 

• Joint molecule deconstruction: In this condition, only 
the joint molecule deconstruction component is provided 
to participants. Participants were also allowed to use any 
online search tools as in the manual condition. 

• Joint molecule deconstruction + AI-assisted revision 
step selection: In addition to the online search in the manual 
condition, participants in this condition have access to both 
the joint molecule deconstruction and AI-assisted revision 
step selection features of RetroLens. 

In the rest of this paper, we refer to these conditions as the “manual 
condition”, “AI condition”, and “AI2 condition”, respectively. 

5.2 Experimental Website Design 
We developed two separate experimental websites for the AI and 
AI2 conditions. Both websites started with a canvas for users to draw 
or upload their target molecules. This canvas was developed based 

4https://scifnder.cas.org 

on an open-source web-based chemical structure editor, Ketcher5, 
which contains common features of the canvas in the supporting 
tools (e.g., SciFinder) that chemists usually use in their research. 
When a user submits a target molecule through the canvas for 
the frst time, a pop-up window would be shown asking the user 
to specify the constraints for retrosynthetic routes. In the default 
setting, no constraints are selected. The reactant(s) derived at each 
step of users’ manual deconstruction are also inputted into our 
system using this canvas. Once users submit molecule(s) through 
the canvas, AI would automatically analyze their complexity. If AI 
could predict possible retrosynthetic routes of the molecule(s), the 
route with the highest confdence value would be displayed under 
the corresponding molecule(s) on the main page. Otherwise, only 
the molecule(s) inputted by the users would be shown. 

The main page of both websites shows the retrosynthetic route 
jointly composed by a human and AI in a tree-like format (Figure 4). 
Such a design models after IBM RXN and is generally familiar to our 
users. The parts of the route processed by the chemist (thick) and 
AI (thin) are distinguished by the thickness of lines connecting the 
nodes in the tree. The molecules that are commercially or readily 
available are enclosed by a green frame, and those that cannot 
be further deconstructed by AI are in red. There are two buttons 
under each of the input molecules in the route: an edit reaction 
button (Figure 4(a)) and an AI-generated routes button (Figure 4(b)). 
Clicking on the edit reaction button would delete all the subsequent 
retrosynthetic steps, if any, under the molecule, and take users to 
the canvas to manually compose reactants from deconstructing 
this molecule. Hovering over the AI-generated routes button pops 
up a tooltip showing the number of alternative routes that AI has 
compiled for the molecule. If users click this button, a sidebar would 
appear on the right side of the main page (Figure 4(c)), listing all 
alternative routes and their corresponding confdence values. If the 
user selects a particular alternative route, it would replace the one 
currently displayed on the main page under the associated molecule. 
Note that as RetroLens does not allow modifcation of AI-predicted 
routes for simplicity, these two buttons are not available under the 
molecules in the parts of routes generated by AI. This is because 
our goal in this work is not to develop a full-fedged system but a 
research prototype to explore whether and how humans and AI can 
collaboratively conduct MRRP. We acknowledge that this may limit 
users’ fexibility in the MRRP process and users may hope to edit 
the AI-returned results. Future work could enable users to revise 
AI’s output for more customized MRRP. A reconfgure constraints 
button (Figure 4(d)) is in the upper right corner of the main page, 
allowing users to reset their constraints for retrosynthetic routes 
at any time. 

The only diference between the two websites is that the one 
for AI2 condition allows users to mark their undesired molecule(s) 
(enclosed in a blue frame) by clicking the molecule(s) in the route. 
The main page of AI2 condition also provides an additional button – 
revise retrosynthetic routes (Figure 4(e)) – in the upper right corner 
for AI-assisted revision step selection. Pressing this button shows 
a popup box asking users to specify the criteria they care about 
for choosing revision steps and input their weights. If no option 
is selected, all criteria will be used and have the same weight by 

5https://github.com/epam/ketcher 

https://5https://github.com/epam/ketcher
https://4https://scifinder.cas.org
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Figure 4: Screenshots of the main page of the experimental website for AI2 condition. (a) edit reaction button. (b) AI generated 
routes button. (c) AI generated alternative routes sidebar. (d) reconfgure constraints button. (e) revise retrosynthetic routes 
button. (f) revision steps sidebar. 

Table 2: Demographics of all participants in the within-subjects study, including each participant’s ID, gender, age, research 
area, research experience (number of years), and MRRP skills. 

ID Gender Age Research Area Exp. MRRP Sills 
1 M 28 Organic Chemistry 7 Expertise 
2 M 21 Organic Chemistry 1 Novice 
3 F 25 Medicinal Chemistry 3 Knowledgeable 
4 M 32 Medicinal Chemistry 9 Expertise 
5 M 27 Polymer Chemistry 4 Knowledgeable 
6 Prefer not to say 26 Organic Chemistry 3 Knowledgeable 
7 F 25 Organic Chemistry 4 Knowledgeable 
8 F 25 Medicinal Chemistry 4 Knowledgeable 
9 F 24 Chemical Engineering 3 Knowledgeable 
10 F 24 Medicinal Chemistry 1 Novice 
11 M 22 Medicinal Chemistry 1 Novice 
12 M 23 Medicinal Chemistry 1 Novice 
13 F 24 Medicinal Chemistry 1 Novice 
14 F 23 Medicinal Chemistry 2 Novice 
15 F 28 Medicinal Chemistry 5 Knowledgeable 
16 F 25 Medicinal Chemistry 3 Knowledgeable 
17 F 24 Medicinal Chemistry 2 Novice 
18 M 24 Medicinal Chemistry 1 Novice 

default. After the confrm button in the pop-up is clicked, a sidebar 
appears on the right side of the main page (Figure 4(f)) and presents 
both revision step combinations for all problematic molecules and 
separate revision steps for individual problematic molecules. The 
specifc values of the criteria of each candidate revision step are 
also shown to users. When clicking on a revision plan (such as the 
“Option 2” in Figure 4(f)), the corresponding revision step(s) in the 
route would be highlighted in yellow. 

5.3 Participants and Procedure 
We recruited 18 participants with diverse expertise in chemistry 
through online advertising and word-of-mouth. To be eligible to 
participate in the study, participants were asked to self-report their 

chemical research experience and familiarity with MRRP for com-
plex molecules (see details in Table 2). 

We discussed with the experts (Section 3) and designed three 
MRRP tasks for our within-subjects user study using three complex 
molecules that are not well-studied as target molecules: 

• T1: Design a multi-step retrosynthetic route for the molecule 
3-oxoisotaxodione. 

• T2: Design a multi-step retrosynthetic route for the molecule 
Fimbricalyxoid A. 

• T3: Design a multi-step retrosynthetic route for the molecule 
Impatien A. 

These three molecules are all natural product molecules with promis-
ing anticancer efects. They also have similar synthetic complexity 
and have a similar amount of relevant literature available online. 
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Figure 5: Procedure of the within-subjects user study. Each participant needs to complete the three MRRP tasks (T1, T2, T3) 
under diferent conditions (M: manual condition, AI: AI condition, AI2: AI2 condition) in a counter-balanced order. 

Figure 5 shows the procedure of the experiment. After obtaining 
participants’ consent, we frst carefully introduced the two experi-
mental websites to the participants and gave them 15 minutes to 
get familiar with the interfaces. Then, we invited each participant 
to complete the three tasks separately under the three conditions. 
We counterbalanced the task assignment and the order of the three 
conditions to alleviate the potential order efect. Each participant 
were given 60 minutes for each task. We recorded the video of each 
user study session during the study. At the end of each session, we 
asked the participants to write down their reasons for their fnal 
route designs and fll out an in-task questionnaire (See Appendix 
A). The questionnaire contains three parts: 1) user confdence in the 
fnal retrosynthetic routes [101]; 2) user cognitive load during the 
tasks, measured using the NASA Task Load Index (NASA-TLX) [35]; 
and 3) user perceptions of RetroLens [59, 78]. Upon the comple-
tion of the three sessions, we further conducted a semi-structured 
interview with the participants about their experience, attitudes, 
and concerns towards RetroLens and collaborating with AI in their 
research. 

6 RESULTS 
To probe the impact of RetroLens on chemists during the MRRP 
process, we conducted a series of statistical analyses on our user 
study data. We frst run the Shapiro-Wilk test on all quantitative 
measures (i.e., user behavior data coded from video recordings and 
responses on questionnaires from participants) and the results show 
that they all do not conform to normality (� < 0.05). Therefore, we 
performed the Friedman test and post-hoc Wilcoxon signed-rank 
test with Bonferroni correction [55] to assess the diference in the 
participants’ experience regarding each measure across the three 
conditions (i.e., manual, AI, and AI2). Finally, two authors of this 
paper conducted a thematic analysis [10] on the transcripts of the 
semi-structured interview and identifed key themes in participants’ 
feedback. In this section, we present the quantitative results con-
cerning user performance, user confdence and cognitive load, and 
qualitative fndings from the interview. 

6.1 User Performance 
To examine how well RetroLens helps users with MRRP, we con-
ducted a statistical analysis on participants’ performance in the 
user study, including the task completion time, the number of ret-
rosynthetic routes explored, and the quality of their fnal outcome. 

6.1.1 Two forms of human-AI collaboration save MRRP Time. We 
compared users’ task completion time in three conditions using the 
Friedman test and found a signifcant diference (�2(2) = 13.37, � < 
.01). The pairwise comparisons showed that participants in the AI2 

condition spent signifcantly (� < .01) and marginally signifcantly 
(� = .06) less time completing the MRRP task than when they were 
in the manual condition and AI condition, respectively (Figure 
6(a)). However, the diference between the manual condition and 
AI condition is not signifcant. Despite this, participants refected in 
the post-study interview that both forms of human-AI collaboration 
in RetroLens contributed to saving their planning time. 12 (of 18) 
participants mentioned that with joint molecule deconstruction, 
they do not need to process the products that can be handled 
by AI. The time for manually inputting these products into other 
search platforms and mentally integrating and transforming the 
reactions found into deconstruction plans is thus reduced. P8 added 
that RetroLens is particularly helpful in this way because it can 
examine whether a molecule could be handled by AI. “In my 
research routine, I always only fnd out that the existing AI-powered 
platforms cannot process the molecules I inquire after I have spent 
a lot of time drawing the molecules and waiting for their analysis 
results”. Seven participants reported that this module also enables 
them to detect mistakes in their deconstruction decisions 
early when seeing that all AI-generated subsequent routes were 
infeasible. In addition, 12 participants think that the AI2 condition 
system allows them to locate the possible steps leading to the 
problems in a route faster. P16 explained, “To fnd out how to 
solve the problems [in the route], I usually need to check my previous 
deconstruction choices one by one, which is really time-consuming. 
It is always difcult for me to determine whether I should backtrack 
and revise some earlier steps or design a completely new route from 
scratch. I cannot tell which would require fewer eforts. In contrast, I 
can easily make decisions based on AI-recommended solutions”. 

6.1.2 Broader retrosynthetic route design space is covered with the 
help of AI. To assess the efectiveness of our system in supporting 
users to explore retrosynthetic route design space, we counted the 
number of retrosynthetic routes each participant explored in each 
condition. As shown in Figure 6(b), participants covered signif-
cantly bigger design space in both the AI condition (� < .01) and 
the AI2 condition (� < .01) than in the manual condition (�2(2) = 
22.81, � < .01); no statistical diference is found between the two 
AI-related conditions. In the manual condition, chemists typically 
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Figure 6: The results of participants’ performance during the MRRP process in terms of task completion time, the number of 
retrosynthetic routes each participant explored and fnal retrosynthetic routes (+ : .05 < � < .1, ∗ : � < .05, ∗∗ : � < .01). 

take a greedy, depth-frst approach, keeping deconstructing a tar-
get molecule with the optimal reaction they could think of in each 
step until they fnally obtain a seemly feasible route. In this way, 
chemists often can only come up with one plan in the theoretical 
MRRP stage and then try to synthesize the target molecule accord-
ingly in the laboratory (P14). They would turn to explore other 
alternative routes only if the synthesis experimentation fails. In 
comparison, in the other two conditions, participants are more 
aware that a retrosynthetic route that seems viable at the current 
step may run into problems later (Section 6.1.1), which reminded 
them to explore other alternatives before the practical exper-
imentation. Moreover, three participants indicated that the cost 
of failure became lower with the assistance of RetroLens, 
making them willing to explore more routes. P16 said, “I would 
frst use RetroLens to explore as many routes as possible. Even if I 
fnally learn that the AI-returned results fail because of technical 
limitations and I need to manually plan the whole route by myself, it 
would not cost me much extra time”. Also, AI can recommend and 
rank diferent revision steps in case all the routes under investiga-
tion fail. With such information, participants tended to feel more 
confdent about the change of direction, if needed. “If AI tells 
me that creating a new route would cost the least efort to solve the 
problems, I would not hesitate to explore a new one” (P12). On the 
contrary, without RetroLens, it is hard for them to abandon the 
current plan even though they have found problems in it (P6), due 
to both the Sunk Cost Fallacy [33] and the lack of clue regarding 
where to start over. 

6.1.3 Two forms of human-AI collaboration together prompt more 
complete MRRP. To investigate the efectiveness of RetroLens in 
helping identify high-quality retrosynthetic routes, we invited two 
experts with over 10 years of experience in chemistry research to 
evaluate the fnal routes designed by the participants. We chose 
completeness (i.e., whether participants’ fnal retrosynthetic routes 
were complete) and perceived reasonableness (i.e., whether partici-
pants’ fnal retrosynthetic routes fulfl known reaction rules, the 
experts’ experimental chemical synthesis experience, and common 
route evaluation criteria such as reaction selectivity and economics 
[95]) as the criteria for decision quality assessment after consulting 
the experts. Specifcally, each participant’s fnal outcomes of the 
planning tasks and the corresponding justifcations in the three 

study conditions were given to the experts. We randomized the 
order of presentation, and both experts were blind to the condi-
tions. Then we asked the experts to rate the completeness and 
reasonableness of each fnal decision on a 7-point Likert scale (1 -
not complete/reasonable at all, 7 - extremely complete/reasonable). 
The results show that experts perceived route completeness in the 
three conditions to be signifcantly diferent (�2(2) = 22.81, � < 
.01), but not so regarding reasonableness. The participants created 
signifcantly more complete routes in the AI2 condition than in 
the manual condition (� < .05), while we did not fnd signifcant 
diferences between other pairs of conditions (Figure 6(c)). The rea-
son for the relatively low reasonableness across all conditions may 
be that the experts tend to have reservations when retrosynthetic 
routes have not yet been empirically verifed, just as the situation 
in the scope of this paper. The experts could only provide rather 
conservative projections of the reasonableness of the routes. De-
spite this, in the post-study interview, some participants reported 
that RetroLens helped them design more reasonable retrosynthetic 
routes. For instance, P5 and P12 refected that RetroLens provided 
more theoretically feasible routes for a product than they could 
have thought of by themselves. 

6.2 User Confdence and Cognitive Load 
To inspect users’ experience in the MRRP process, we statistically 
analyzed their confdence in the fnal route constructed and their 
perceived cognitive load during the tasks based on their responses 
in the post-study questionnaires. 

6.2.1 More confident in the final decision with AI’s support. Since 
chemists’ confdence in their designed retrosynthetic routes is an 
important factor that directly infuences whether they would pro-
ceed to the experiment stage and synthesize molecules based on 
the routes, we compared participants’ confdence in their fnal de-
cisions in the three conditions. This measurement could help us to 
explore whether RetroLens can facilitate chemists to fnd retrosyn-
thetic routes that they are inclined to test in the lab earlier, thereby 
accelerating the entire MRRP process. Compared to the manual 
condition (Figure 7), participants reported to be signifcantly more 
confdent (� < .05) in their fnal decisions in the AI condition (�2(2) 
= 24.53, � < .01). The pairwise comparisons also show that their 
confdence ratings in the AI2 condition are signifcantly higher 
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Figure 7: Means and standard errors of the participants’ confdence in their fnal retrosynthetic routes (left) and cognitive load 
in MRRP process (right) on a 7-point Likert scale (∗ : � < .05, ∗∗ : � < .01). 

than those in the manual condition (� < .01) and the AI condition 
(� < .05). From the interview, we learned that the participants with 
diferent MRRP experiences may have diferent reasons for having 
higher confdence in their designed routes when using RetroLens. 
Novice participants mainly (6/8) suggested that RetroLens enabled 
them to have a clearer and more objective understanding of 
the output routes. In particular, the confdence of AI-generated 
routes in the deconstruction stage implies the feasibility and success 
rate of the routes. Interestingly, P10 refected that the AI-assisted 
revision step selection function can also help quantify the quality 
of the retrosynthetic routes. In the manual condition, all partici-
pants complained that they usually cannot fnd related works that 
study the exact same molecules as their targets. Thus, although 
they have carefully studied the precedents of similar molecules 
to infer possible deconstruction for their targets, they were still 
not sure whether the routes are feasible and whether the reactants 
generated from their deconstruction indeed exist. In contrast, the 
specifc values of the assessment criteria (Section 4.1.2) for ranking 
candidate revision steps shown in our system could provide quanti-
tative evidence of the rationality of each manual step. For example, 
to compute the reaction confdence of a manual step, RetroLens 
would estimate the possibility of the existence of the reactants and 
the success rate of this step. The participants with more MRRP 
experience reported that the AI-generated routes allowed them 
to reconfrm their preliminary ideas of retrosynthetic route 
design, if any, and our system thus increased their confdence. “If 
the routes recommended by AI generally align with my deconstruction 
ideas, I would feel more confdent in the fnal route design” (P4). 

6.2.2 Less cognitive load perceived when collaborating with AI. All 
pairwise comparisons between the three study conditions reveal 
signifcant diferences in the Mental Demand, Temporal Demand, 
Efort, and Frustration dimensions of cognitive load (Figure 7). The 
participants experienced signifcantly less cognitive load in these 
four dimensions in the AI2 condition than in both the manual con-
dition (� < .01) and AI condition (� < .05). These dimensions of 
cognitive load also received signifcantly lower ratings in the AI 
condition than in the manual condition (� < .05). As for the other 
two dimensions of cognitive load, the AI2 condition is perceived to 
be signifcantly less Physically demanding (� < .01) and with better 

Performance (� < .05) than the manual condition, while the difer-
ences between other pairs of conditions are not signifcant (Figure 
7). 11 participants explained that they perceived less cognitive load 
when using RetroLens because RetroLens saved a lot of their ef-
fort in designing retrosynthetic routes of the products which 
can be performed by AI. For these products, chemists no longer 
need to retrieve relevant information from their existing knowledge 
base. Also, they do not have to search and make sense of similar 
reaction precedents in the literature and store such large-scale new 
information in their working memory to infer possible deconstruc-
tion of the products on their own. Additionally, six participants 
stated that in the manual condition, they overlooked some criteria 
which should be considered when deciding how to fx the problems 
in the retrosynthetic routes. P2 complained, “this caused me to make 
more mistakes in the revision process”. In contrast, they reported 
that RetroLens helped them identify possible revision steps 
more accurately and comprehensively, enabling them to get 
theoretically feasible routes through fewer iterations and 
thus signifcantly reduced their cognitive load. 

6.3 Qualitative Feedback on User Experience 
and Concerns towards RetroLens 

Through the post-study interview, we investigated how participants 
perceived and used RetroLens. We also discuss their concerns about 
collaborating with AI during the MRRP process (Table 3). 

6.3.1 Perception towards RetroLens. In general, the subjective rat-
ings in the post-study questionnaire show that participants were 
generally positive about RetroLens (Figure 8). We further derive the 
following three reasons behind the positive ratings via thematic 
analysis of the post-study interview. 

• RetroLens supports intuitive inspection and compari-
son of retrosynthetic routes. Four participants reported 
that they can examine and compare alternative retrosyn-
thetic route designs conveniently with RetroLens. Without 
this system, chemists have to switch between various plat-
forms, from search engines for chemical reactions to existing 
AI-powered services, to explore possible retrosynthetic re-
actions at each step. They also need to manually piece the 
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Table 3: Top: User perception towards RetroLens and possible underlying reasons. Middle: User adaptation of workfows and 
their specifc usage of RetroLens. Bottom: User concerns about collaborating with AI and possible underlying reasons. 

Perception towards RetroLens Possible Reasons 
Enable chemists to compare alternative retrosynthetic route designs by Support intuitive inspection and comparison embedding them into the existing part of the route. 

Inspire novel perspectives Manual and AI parts of the retrosynthetic route can be reviewed as a whole. 
Provide globally optimal revision plans for all problematic molecules. 

Facilitate a comprehensive trade-of evaluation Help comprehensively consider multiple criteria to fnd ideal revision steps. 
Support comparisons of candidate revision steps on diferent dimensions. 

Adaption of workfows Usages 
Collaborate with AI to iteratively design and revise for a fnal theoretically 

Use RetroLens in theoretical MRRP process possible retrosynthetic route. 
Quickly verify ideas of MRRP with RetroLens. 
Revise problematic molecules encountered in practical synthesis with Use RetroLens in practical synthetic experimentation RetroLens. 

Concerns about collaborating with AI Possible reasons 
Chemists cannot properly examine the quality of AI-generated routes. Being misled by AI Over-trust the imperfect AI. 
Chemists hope to hand deconstruction tasks over to AI earlier and the Being over-infuenced by AI thinking process is thus constrained. 

step-wise decisions together to construct the fnal plan, the 
workload of which increases dramatically when multiple 
options exist in each step. In contrast, RetroLens enables 
users to compare alternative designs by embedding them 
into the existing part of the route (P5). 

• RetroLens inspires new perspectives throughout MRRP. 
Five participants claimed that the joint design of retrosyn-
thetic routes enabled by RetroLens stimulates their creativity 
during the MRRP process. In the manual condition, chemists 
tend to take a depth-frst exploration approach and only fo-
cus on the deconstruction of the product(s) at the current 
step. Although they also use AI-powered tools in their MRRP 
routine, the predicted results would only infuence their local 
decisions. Nevertheless, RetroLens combines the outcomes 
of humans and AI together, enabling chemists to review 
these two parts as a whole. For example, as P13 said, “the 
AI-generated routes reminded me of a better deconstruction of 
the target molecule, so I returned back to revise that manual 
step I made earlier”. 

• RetroLens facilitates a comprehensive trade-of eval-
uation during MRRP process. Without RetroLens, it is 
extremely difcult, if not impossible, for chemists to identify 
a globally optimal solution for all problems in the route. In 
comparison, six participants reported that RetroLens can 
address this challenge since it provides revision plans for 
all undesired molecules. Additionally, chemists always fnd 
it “a struggling process to comprehensively consider multiple 
factors to fnd an ideal revision step, especially when the ret-
rosynthetic routes are complex” (P1). P2 encountered similar 
issues, “in the past, I simply hoped to revise as few steps as pos-
sible, but I ignored the impact of my revisions on the associated 
branches that do not have problems. This often causes me to 
make more mistakes in the revision process”. With RetroLens, 
seven participants feel it much easier to make revision de-
cisions, as users only need to input the criteria they care 

about and the corresponding weightings based on their pref-
erences, and AI can automatically rank possible revision 
steps accordingly. Furthermore, RetroLens displays the con-
fdence of AI-generated retrosynthetic routes and the SAW 
scores of candidate revision steps. Five participants conveyed 
that such information makes assessing the trade-ofs among 
diferent revision plans a lot simpler. For instance, P1 com-
mented, “I can not only know the diference between the cost of 
choosing diferent revision steps based on the overall scores but 
also compare the revision steps on diferent dimensions based 
on my needs”. 

6.3.2 Adaptation of Workflows. All participants reported that they 
want to use RetroLens in their future research (Figure 8(b)), but 
possibly in diferent stages according to their own needs and pref-
erences. First, about 89% of participants (16/18) stated that they 
would use RetroLens in the theoretical MRRP process. They 
could collaborate with AI to design an initial retrosynthetic route 
and iteratively revise the route with the support of the AI-assisted 
revision step selection function until they obtain a theoretically 
possible route. Three participants (17%) suggested that RetroLens 
may support them verify their ideas of MRRP. For example, P4 
said “sometimes I would have an initial idea of the frst few steps of 
deconstruction when I see a target molecule. Then RetroLens could 
help me quickly complete the routes and help me check whether my 
thinking is in the right direction”. Second, since chemists usually fnd 
new problems with the routes in actual molecule synthesis, four 
participants (22%) indicated that RetroLens can also be used dur-
ing practical synthetic experimentation. When encountering 
problematic molecules (e.g., products that cannot be synthesized in 
the real world following the retrosynthetic route), they would input 
these molecules back into our system and revise the routes based on 
RetroLens’s recommendations. Interestingly, P1 proposed that such 
usage is also applicable to the synthesis of simple molecules. “Al-
though existing AI-powered MRRP tools can handle simple molecules, 
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(a) AI system 

(b) AI2 system 

Figure 8: User perception towards the (a) AI and (b) AI2 systems. 

I often have problems with the practical synthesis process based on 
their returned routes. RetroLens can help me to modify the routes”. 

6.3.3 Concerns about collaborating with AI. In addition to the afore-
mentioned positive feedback about RetroLens, participants also 
expressed concerns about the process of collaborating with AI. We 
summarized their views into two key themes below. 

• Fear of being misled by AI. Six participants worried that 
they would be misguided by AI due to the inaccuracy of 
RetroLens. For example, when fnding that the AI-generated 
retrosynthetic routes failed, P17 went back and checked 
whether she had made mistakes in her previous manual 
steps. Nevertheless, she fnally discovered that the failure oc-
curred because the molecule was still too complex for AI to 
analyze, although it was originally deemed doable according 
to the empirical rule of thumb (Section 4.1). This concern 
comes particularly from the novice chemists (5/6). For one 
thing, they were not able to properly tell the complexity of 
a molecule from experience and examine the quality of AI-
generated routes as expert participants did. For another, we 
found that these participants tended to over-trust the imper-
fect AI. For example, P11 said, “since I do not have abundant 
knowledge [in MRRP], I am not confdent in my deconstruc-
tion decisions. So I was more inclined to doubt my previous 
decisions rather than questioning system performance when I 
found the MRRP is a failure”. P18 even expressed that “I think 
AI would never perform worse than me”. 

• Fear of being over-infuenced by AI. Three participants 
reported that their thinking process was infuenced by the AI 
collaborating with them. For instance, P9 indicated that in 
addition to considering synthesis-related knowledge, she 
would think of how to deconstruct molecules into reac-
tants that AI can handle so that she could hand over the 
deconstruction tasks to AI as soon as possible. However, 
she claimed that “even if this did help me plan retrosynthetic 
routes faster and reduce my workload, my manual MRRP is 

thus more constrained. Sometimes, I found that the quality of 
my manual route design declined as a result”. 

7 DISCUSSION 
In this section, we frst discuss the generalizability of our work. 
Built upon the key fndings in the user study, we then derive several 
design issues in human-AI collaboration for multi-step problems 
and propose corresponding design considerations (DC) adapted 
from and extended beyond existing human-AI interaction guide-
lines [2]. We also discuss the limitations and future work of our 
research. 

7.1 Generalizability of Our Work 
Although our system is designed for MRRP, our proposed mecha-
nisms and pipeline for human-AI collaboration could be easily 
extended to other multi-step problems (e.g., programming and 
multi-step mathematical questions). Various AI models have been 
proposed to help people solve multi-step problems [38], but they 
are usually limited to solving relatively simple and repetitive cases 
[9]. Our human-AI collaborative approach could be adapted to help 
solve complex cases by 1) adjusting the rules for task allocation 
between humans and AI and 2) unifying the criteria used by hu-
mans and AI to assess the cost and gain of each problem step. For 
example, to modify our system for complex programming, we can 
discuss with domain experts to identify which kind of cases can be 
handled well by existing AI, how they debug their codes, and how 
they determine the severity of errors and warnings as well as places 
to improve. By translating these insights into computational rules, 
the system can automatically assign programmers and AI to work 
on diferent code segments of a complex project. Once the codes 
written by humans and AI are integrated together, the system could 
help suggest and rank lines of codes that could possibly be opti-
mized based on user preferences. Some of the criteria employed in 
MRRP may be applicable in this process. For example, programmers 
may hope to reduce the time complexity of the program on the 
premise of modifying as few lines of code as possible and afecting 
as few code segments they are satisfed with as possible. 
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7.2 Design Issues and Design Considerations 
7.2.1 Misled by inappropriate task allocation. One pain point we 
found from the user study is that chemists may be misled by faulty 
results generated by AI during the joint action process due to inap-
propriate task allocation (Section 6.3.3). Although we have carefully 
discussed with the experts to defne AI’s capability boundary for 
task distribution, participants still found some special cases which 
AI was expected to handle well but failed to do so. The steps con-
taining such molecules were wrongly assigned to AI, and its failure 
negatively afected users’ decision-making. On the one hand, when 
seeing failed routes returned by the AI, the participants would doubt 
and reinspect their manual deconstruction, resulting in a waste of 
time. On the other hand, users felt confused about how to assess 
AI’s capability and spent extra efort on determining task allocation 
later. This imposed a learning curve on the participants. The frst 
few times they encountered special cases where AI returned failed 
retrosynthetic routes as the inputted molecules went beyond its 
ability, the participants had to diagnose whether the failures were 
caused by inappropriate task allocation or their previous decisions. 
As their understanding of AI’s capability built up, they would ig-
nore AI’s output and directly did manual deconstruction when they 
encountered similar molecules. Although RetroLens statistically 
lowered chemists’ overall cognitive load during the MRRP process 
(Section 6.2.2), six participants reported in the interview that it 
could be cognitively demanding when there was a need to analyze 
AI’s faulty predictions to update their knowledge of AI. 

DC1. Provide more fne-grained task allocation. We rec-
ommend designers to explore more accurate specifcations of the 
AI capability boundary and more fne-grained task allocation in 
human-AI collaborative systems [50]. For example, rather than us-
ing heuristic rules, we could train a predictive model to estimate 
case by case whether a molecule inputted by the user is within AI’s 
scope of capabilities so that the steps could be directed to humans 
or AI dynamically. 

DC2. Instantly communicate how well AI can do what it 
can do as collaboration unfolds. Prior work proposed human-AI 
interaction design guidelines suggesting that AI systems should 
help human “make clear how well the system can do what it can do” 
when users initially interact with AI [2]. However, in the context 
of multi-step problems, providing a general knowledge heuristic of 
AI’s capability boundary in the initial stage of human-AI collabora-
tion is insufcient, as AI’s ability at each detailed step could vary. 
Hence, we propose that the previous design guidelines could be 
further improved to “update and communicate how well the system 
can do what it can do” during interaction to mitigate users’ cognitive 
load of learning AI’s capability boundary on their own. Designers 
can enhance model transparency and interpretability at a instance 
level to help users detect the inaccuracy of AI early on. To achieve 
this, in addition to the model’s confdence in AI-generated retrosyn-
thetic routes, which has been shown in our system, RetroLens could 
provide the reaction precedents in training datasets similar to the 
routes [16, 18, 36, 48] and the data sources of these precedents 
[45, 89], making it easier for users to understand and evaluate these 
routes. Moreover, the systems could store special cases that cannot 
be handled by AI previously and inform chemists that AI may make 
mistakes when they meet similar molecules in the future [62]. 

7.2.2 Tendency of over-reliance on AI. We observed in our user 
study that, when fnding AI-generated routes were successful, most 
participants (11/18) would directly check the returned routes and 
choose one rather than analyzing the products by themselves. In 
this way, users could collaborate with AI more smoothly and may 
hand over the deconstruction tasks to AI earlier to reduce their own 
workload. Some participants even changed their thinking process 
to adapt to AI’s capability (Section 6.3.3) and consciously decon-
structed molecules into reactants that AI can process (Section 6.3.3). 
They thus were less likely to be misled by AI’s wrong route predic-
tion. However, such adjustments could be a double-edged sword. 
For one thing, chemists’ manual MRRP process would consequently 
be constrained by the output of AI. The diversity of the fnal de-
sign might be endangered [39]. For another, this may cause users’ 
over-reliance on AI (i.e., the user could design a better retrosyn-
thetic route for a product on their own than AI but accept AI’s 
recommendation [12]) [43, 70]. Even though AI enables users to 
obtain complete routes faster (Section 6.1.1 and 6.1.3), it is possible 
that users may only obtain suboptimal decisions which are less 
reasonable and feasible than those designed by human alone [22]. 

DC3. Watch out for and mitigate human over-reliance on 
AI. We suggest extending design guidelines for human-AI inter-
action and collaboration [2] and recommend that systems should 
“watch out for and mitigate human over-reliance on AI” during interac-
tion. Past research highlights the dual-process theory in the human 
decision-making process [11, 93] and demonstrates that cognitive 
forcing strategy could efectively reduce users’ over-reliance on AI 
[12, 69]. Therefore, when recognizing users are trying to turn over 
too much work to AI, we suggest applying cognitive forcing func-
tions to systems, such as having users make independent decisions 
before seeing AI’s prediction. Moreover, an option to enable/disable 
AI could be provided to users so that the deconstruction tasks would 
be delegated to AI only upon users’ request even if the molecules 
are within the scope of AI’s capability [27]. In addition, showing 
counterfactual explanations for AI’s output would also encourage 
users to explore more route design rather than simply accepting 
whatever returned by AI [66, 88]. 

7.2.3 Needs for personalized support. Previous studies on human-
AI interaction stress the need to “learn from user behavior” over time 
[2]. Similarly, our experiment reveals that the participants really 
demand and appreciate personalized support during the MRRP 
process. For example, P9 said that “it would be better if AI can rank 
the AI-generated retrosynthetic routes and candidate revision steps 
based on my previous choices”. 

DC4. Maintain a shared mental model of humans. When 
conducting retrosynthetic analysis, chemists may have their own 
preferences and concerns (e.g., laboratory resources available for 
experiments). To achieve efective human-AI collaboration, we sug-
gest that AI should maintain a shared mental model of users to 
make its service personalized and adaptive. Many existing methods 
for inferring human mental models (e.g.,[44]) can be applied to 
help AI derive users’ preferences on retrosynthetic routes from 
their historical decisions, update the estimated user model based 
on current interactions, and adjust the ranking of AI-generated 
routes and the weightings of the criteria for assessing the candidate 
revision steps accordingly. 
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7.3 Limitations and Future Work 
Our system and experiments have several limitations. First, as a 
proof-of-concept system, RetroLens does not allow chemists to edit 
the parts of retrosynthetic routes returned by AI. This may afect 
the efciency and fexibility of MRRP. Second, the set of criteria con-
sidered for ranking the candidate revision steps in RetroLens came 
from the literature survey and the participatory design process, 
which may be incomplete. Third, as chemical synthesis takes a long 
time and needs lots of resources [91], we could not test participants’ 
fnal retrosynthetic plans by practical synthesis experimentation 
within the scope of our study. We can only invite experts to assess 
the routes based on their experience to estimate the feasibility of 
the routes. Furthermore, human expertise plays an important role 
in human-AI collaboration (e.g., infuencing human’s preference 
for delegating to AI [40]). However, we only considered user exper-
tise as a random variable in our user study and did not analyze its 
impact on how chemists would interact with and perceive towards 
RetroLens. 

In the future, we will apply more advanced AI MRRP models 
in joint molecule deconstruction (e.g., models trained on a larger 
database) and improve the AI-assisted revision step selection mech-
anisms by considering a more comprehensive set of criteria and ex-
ploring other MCDM algorithms (e.g., fuzzy Choquet integral [85]). 
To help users better collaborate with AI, we could provide more 
information about AI’s output, such as the evidence of AI’s predic-
tion (i.e., similar reaction precedents in existing work). Moreover, 
we will incorporate more customizable settings in our system. For 
example, RetroLens could enable users to modify the AI-predicted 
routes to improve users’ fexibility in the MRRP process. To allow 
users to better screen the desired revision plans, RetroLens also 
could display only the revision steps whose SAW scores are lower 
than a value specifed by a user. In addition, we will recruit more 
chemists to our user study and balance the number of participants 
with diferent levels of molecule synthesis experience to systemat-
ically explore whether they would have diferent user needs and 
collaboration patterns with our system. 

8 CONCLUSION 
In this paper, we presented RetroLens, a human-AI collaborative 
system that facilitates humans and AI to complement each other 
for MRRP for complex molecules. Through an iterative participa-
tory design process, we co-designed the RetroLens system with six 
chemical experts. RetroLens adopts two forms of human-AI collab-
oration: joint action for molecule deconstruction and AI-assisted 
decision-making for revision step selection. RetroLens allocates 
deconstruction tasks to chemists and AI based on an empirical rule-
of-thumb about the strengths of both parties. It also helps identify 
possible causes of the problems in the initial route, and recom-
mends candidate revision steps based on chemists’ preferences. A 
follow-up within-subjects user study demonstrated that RetroLens 
improved chemists’ efciency in MRRP, increased their confdence 
in the fnal decisions, and lowered their cognitive load. We believe 
our work takes the frst step to explore human-AI collaboration in 
dynamic, multi-step problem solving. 
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A APPENDIX 

A.1 Measurements of User Experience in MRRP 

Table 4: In-task questionnaire used in the AI and AI2 condi-
tions in 7-point Likert scale. 

Category 
User confdence in 
fnal planning 

Question 
Q1. How confdent are you in your deci-
sion? 

User cognitive load 
during MRRP 

Q2. How much mental and perceptual 
activity was required (e.g., thinking, de-
ciding, calculating, remembering, look-
ing, searching, etc.)? 
Q3. How much physical activity was re-
quired (e.g.. pushing, pulling, turning, 
controlling, activating, etc.)? 
Q4. How much time pressure did you 
feel due to the rate or pace at which the 
tasks or task elements occurred? 
Q5. How successful do you think you 
were in accomplishing the goals of the 
task set by the experimenter (or your-
self)? 
Q6. How hard did you have to work 
(mentally and physically) to accomplish 
your level of performance? 
Q7. How insecure, discouraged, irritated, 
stressed and annoyed versus secure, grat-
ifed, content, relaxed and complacent 
did you feel during the task? 

Website usability Q8. What do you think of the usability 
of the website? 

Website usefulness Q9. What do you think of the usefulness 
of the website? 

Trust of website Q10. Do you trust the website? 
User satisfaction 
with website 
Adoption and use 
intention 

Q11. Are you satisfed with the website? 

Q12. Do you intend to use the website 
in future research? 
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