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ABSTRACT 
In AI-assisted decision-making, it is critical for human decision-
makers to know when to trust AI and when to trust themselves. 
However, prior studies calibrated human trust only based on AI 
confdence indicating AI’s correctness likelihood (CL) but ignored 
humans’ CL, hindering optimal team decision-making. To mitigate 
this gap, we proposed to promote humans’ appropriate trust based 
on the CL of both sides at a task-instance level. We frst modeled 
humans’ CL by approximating their decision-making models and 
computing their potential performance in similar instances. We 
demonstrated the feasibility and efectiveness of our model via 
two preliminary studies. Then, we proposed three CL exploitation 
strategies to calibrate users’ trust explicitly/implicitly in the AI-
assisted decision-making process. Results from a between-subjects 
experiment (N=293) showed that our CL exploitation strategies 
promoted more appropriate human trust in AI, compared with only 
using AI confdence. We further provided practical implications for 
more human-compatible AI-assisted decision-making. 

CCS CONCEPTS 
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1 INTRODUCTION 
Artifcial Intelligence (AI) systems are increasingly adopted in var-
ious decision-making scenarios [24, 27, 49, 99, 104]. However, AI 
is still far from 100% accurate in many real-world applications [89, 
90, 107]. Besides, due to legal and ethical concerns, it remains risky 
for AI to make a decision autonomously, especially in high-stake 
domains such as medicine, criminal justice, etc. [10, 18, 59]. Hence, 
a paradigm named AI-assisted decision-making [6, 14, 100, 106] is 
proposed and widely studied in HCI and AI communities. In this 
paradigm, AI performs an assistive role by providing a recommen-
dation, while the human decision-maker can choose to accept or 
reject AI’s suggestion in the fnal decision. 

One key challenge in AI-assisted decision-making is whether 
the human-AI team can achieve complementary performance, i.e., 
the collaborative decision outcome outperforming human or AI 
alone [6, 54, 106]. A critical step toward complementary perfor-
mance is that human decision-makers could properly determine 
when to take the AI’s suggestion into consideration and when to be 
skeptical about it [14, 82, 106]. Since well-calibrated AI confdence 
scores can represent the model’s actual correctness likelihood (CL) 
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When to Calibrate Humans to Trust Themselves
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Figure 1: The diference between prior work and this work. (A) In prior work, AI’s calibrated confdence is used to represent 
the AI’s correctness likelihood (CL), which is a value ranging from 0.5 to 1.0 in binary-classifcation tasks. Existing studies 
usually calibrate humans’ trust based on an empirically set threshold, i.e., when AI’s confdence exceeds this threshold they 
will calibrate humans to trust the AI, and when AI’s confdence falls below this threshold they will calibrate humans to distrust 
the AI (trust themselves). (B) In this work, besides considering AI’s CL, we also estimate humans’ CL in each task instance. 
We propose calibrating humans’ trust based on the relative CL of both parties, rather than solely relying on whether AI’s 
confdence is above a preset threshold. For example, if the AI’s CL is higher than the human’s, we will calibrate humans to 
trust AI; if the AI’s CL is lower than the human’s, we will calibrate humans to trust themselves. 

[5, 6, 41], several recent studies propose diferent designs to help 
humans allocate appropriate trust to AI based on this information 
[6, 82, 106]. For example, Zhang et al. [106] directly display AI’s 
confdence score to human decision-makers. Bansal et al. [6] show 
AI’s explanations for the alternative predictions if the AI’s conf-
dence is below a threshold to make humans doubt the AI. Rastogi et 
al. [82] propose leaving more time for humans to make a decision 
when the AI’s confdence is lower than a threshold to reduce an-
choring bias. Nevertheless, the empirical results from these studies 
are mixed at best [6, 52, 82, 106]. There are two potential reasons. 
First, these works assume humans have an appropriate perception 
of their capability (e.g., CL) in a task instance to make reasonable 
decisions after knowing AI’s CL. However, people usually have 
poorly-calibrated self-confdence that cannot reliably refect their 
actual CL [47, 67–69, 102]. Second, these methods try to steer how 
much humans value AI’s suggestions solely based on AI’s correct-
ness likelihood (illustrated in Figure 1 (a)) while largely overlooking 
humans’ correctness likelihood in each case. This poses a question: 
When AI’s correctness likelihood is low (high) but that of humans is 
even lower (higher), should we still encourage humans to doubt (trust) 
the AI? 

To explore the answer to this question, in this paper, we propose 
a framework that aims to promote appropriate human trust in AI 
and complementary team performance according to the predicted 
human-AI correctness likelihood (CL) at a task instance level. In 
this framework, as shown in Figure 1 (b), we no longer have to 
calibrate human trust based solely on whether the AI’s confdence 
exceeds a preset threshold. Instead, the CL of both humans and 
AI on a given task instance will be taken into consideration. To 
verify the feasibility and efcacy of the proposed framework for 
promoting appropriate trust and complementary performance, our 
investigation is divided into two phases: 1) How to model humans’ 
capability (CL) on a given task? And 2) How to leverage human-
AI capabilities (CL) to promote appropriate trust in AI-assisted 
decision-making? 

In the frst phase, based on the theories from cognitive science 
that humans usually adopt similar solutions to deal with similar 
problems [16, 40, 47, 71], we propose to estimate people’s CL on 
a new task according to their performance in similar tasks. For 
example, if a person performs well on similar tasks, her CL on the 
current task is also likely to be high. However, it is often difcult 
to obtain enough decision data to compute human performance on 
similar tasks. To solve this problem, we propose a method to frst 
approximate a human’s decision-making model (a mapping from 
task input to human decision), then apply this model to predict 
the human’s possible decisions in similar task instances. In the 
process, a question arises, RQ1: How to efectively approximate 
a human’s decision-making model? To explore the answer, we 
propose to combine data-driven initialization and interactive mod-
ifcation to derive the possible decision rules employed by each 
individual. And we design an interface called interactive rule set 
for users to revise the initial model to better align with their in-
ner decision-making process. We verifed the appropriateness of 
the designed interface compared with another interface interac-
tive decision tree through a preliminary study (N=20). We take the 
system-initiated & human-revised decision rule set as an approxi-
mated human decision-making model. For each new task case, we 
frst retrieve the closest cases from the existing task dataset (used 
for training the AI), and then apply the derived models of individ-
ual decision-makers to get their likely predictions for those cases. 
Afterward, based on the estimated predictions and ground truth, 
we can calculate the probable performance of an individual, and 
further use this information to estimate the correctness likelihood 
(CL) of that person on the current new task case. Combining the 
human CL and AI CL together, we can identify who has a higher 
capability in each task instance. Through a crowdsourcing study 
(N=30), we validated the efectiveness of our method in identifying 
complementary task instances (only one in the human-AI team 
can do it right) compared to the traditional AI confdence-based 
method. 
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In the second phase of our work, after obtaining the estimated 
human-AI CL on an input task case, we further explore how to 
exploit this information to foster appropriate human trust and ulti-
mately reach complementary performance in AI-assisted decision-
making. In particular, we attempt to reduce human trust in AI 
when humans have a higher CL than AI, and increase human trust 
otherwise. Based on the relevant literature on people’s cognitive 
processes [5, 14, 32, 76], we propose three CL exploitation strate-
gies to communicate the CL of both sides to the responsible human 
decision-maker explicitly or implicitly, namely Direct Display, Adap-
tive Workfow, and Adaptive Recommendation. Two related research 
questions emerge concerning these three CL exploitation strategies: 
RQ2: How do diferent strategies afect human trust appro-
priateness and team performance? And RQ3: How do difer-
ent strategies afect humans’ perceptions and experiences 
in the decision-making process? Through a between-subjects 
crowdsourcing experiment with 293 participants, we found that our 
proposed three CL exploitation strategies resulted in more appro-
priate user trust in AI compared to baseline conditions, especially 
when the AI gave wrong recommendations. The three proposed 
CL exploitation strategies also led to improved team performance. 
However, diferent conditions did not lead to signifcantly diferent 
human perceptions or experiences in most subjective measures 
except for the perceived complexity. 

Our work provides a new perspective on promoting appropriate 
human trust in AI-assisted decision-making. In summary, our key 
contributions include: 
• We propose a framework to promote humans’ appropriate trust 
in AI-assisted decision-making at a task instance level based on 
the capabilities (e.g., CLs) of both sides. 

• Accordingly, we design a method for estimating humans’ CL on a 
new task instance by approximating users’ decision-making mod-
els with a data-driven initialization and interactive modifcation 
method to derive humans’ decision rules. 

• We conduct two preliminary studies to verify the appropriateness 
of the interactive decision rule creation interface, and to verify 
the efectiveness of the human CL modeling method. 

• Based on the human-AI CL and related theories of humans’ cog-
nitive processes, we propose three CL exploitation strategies to 
foster humans’ appropriate trust in AI explicitly or implicitly. 

• We conduct a user study to analyze the impact of diferent CL 
exploitation strategies on user trust appropriateness, team per-
formance, and user experience. Based on our key fndings, we 
provide design implications for more efective human-AI collab-
orative decision-making. 

2 RELATED WORK 

2.1 Trust Calibration in AI-Assisted 
Decision-Making 

Trust calibration refers to the correspondence between people’s 
trust in the AI and the AI’s actual capabilities [57]. When trust 
exceeds the AI’s capabilities, over-trust leads to misuse, which refers 
to when people trust AI while they shouldn’t [58, 77]. Under-trust, 
when trust is less than the AI’s capabilities, leads to disuse, which 
refers to people failing to use it when they should [58]. These fawed 
human-AI partnerships can result in costly and even catastrophic 

outcomes. Successful decision-making requires humans to calibrate 
their trust in AI on a case-by-case basis [4–6, 95, 106]. 

A pivotal approach to calibrating human trust is to convey AI’s 
capability (also called reliability or trustworthiness) to humans 
[6, 81, 95, 100]. There are several cues that can refect AI’s capability, 
such as the AI’s accuracy (including stated accuracy [83, 105] and 
observed accuracy [65, 83, 105]), explanation [53, 54, 81], the actual 
behavior/output [3, 4, 38], and confdence [6, 82, 106], etc. For 
example, some works help people build a mental model of AI’s 
error boundaries by observing AI’s outputs [4]. Also, several studies 
expected that if humans were shown explanations for AI decisions 
[6, 81, 95, 100], they would be able to identify the trustworthiness 
behind the prediction. 

One of the most commonly used capability indicators is AI’s cali-
brated confdence score, as well-calibrated confdence can accurately 
refect the actual correctness likelihood (CL) of the AI in a specifc 
task instance [5, 6]. Therefore, many recent works calibrate human 
trust based on AI confdence. One line of work directly displays 
the calibrated confdence score to people. For example, Zhang et al. 
[106] compared the efects of showing and not showing AI’s conf-
dence on people’s trust calibration and task performance. Another 
line of work integrates AI confdence into the interface design. For 
example, Rastogi et al. [82] discovered that if given longer thinking 
time, people would have more cognitive resources to invest in ana-
lytical thinking and reduce being anchored by AI. Therefore, they 
assigned diferent lengths of decision-making time to humans based 
on AI’s confdence. In addition, Bansal et al. [6] developed an adap-
tive explanation strategy that explains the alternative predicted 
classes when the AI confdence is below a threshold, otherwise only 
explaining the top prediction. 

There are two faws in these works. On the one hand, they assume 
people have an appropriate perception of their capability (CL) in 
a task instance to make reasonable decisions after knowing AI’s 
CL. However, people’s subjective self-confdence usually cannot 
accurately represent their actual CL [47, 67–69]. On the other hand, 
these approaches calibrate humans’ trust only based on AI’s CL 
and ignore human CL. For example, existing methods make people 
doubt AI when AI’s confdence (CL) is low. But what if the human’s 
CL is even lower? Note that the confdence of AI just represents 
a “likelihood”; thus, a prediction with low confdence can still be 
correct, and a high-confdence prediction may also err. To solve 
these problems, our work proposes a novel method for calibrating 
humans’ trust based on human and AI capability (CL). 

2.2 Mental Model in Human-AI Collaboration 
Mental models are presentations of external reality that people 
use to interact with the world around them [46, 75]. In human-AI 
collaboration, some studies investigate building humans’ mental 
model of the AI partner [4, 38, 63, 76], so that humans know whether 
and when to assign a task to the AI. For example, Gero et al. [38] fnd 
those who win more often have better estimates of the AI agent’s 
abilities in a cooperative game setting. Bansal et al. [6] help humans 
build a mental model for the AI system’s error boundary, and they 
found that a good mental model can help humans achieve better 
performance. Besides building a mental model of how AI works, a 
faithful mental model of how human works is also essential. For 
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example, in human-robot interaction, some works approximate 
human decision policy by modeling how people will behave in 
diferent environments [25, 73]. However, little attention has been 
paid to leveraging the model of how humans make decisions in AI-
assisted decision-making. In this paper, we approximate humans’ 
decision-making (mental) models at the instance level (i.e., given 
a task instance, what prediction will people make), then based on 
the model, we can estimate humans’ CL on a new task instance. 

One approach to building humans’ mental models is through 
data-driven methods. For example, in a loan approval task, Wang 
et al. [98] construct a general human prediction model via a neural 
network with crowdsourcing data. Another approach is through 
rule-based methods. For instance, Bansal et al. [4] use simple rules 
to build humans’ mental model of AI’s error boundary, such as “(age 
= old & bloodePressure = high)”. Mozannar et al. [72] ask humans to 
formalize their mental model of AI’s error regions by writing a rule 
describing the region after solving a set of selected examples. Espe-
cially, rule-based methods have the advantage of interpretability 
[2, 51, 55, 60, 61]. In this work, we propose to combine data-driven 
initialization and interactive rule modifcation to derive the possi-
ble decision-making mental model employed by individuals. This 
method has two advantages. First, it saves people’s time by training 
an initial model via a small amount of user decision data, so that 
the model does not need to be built from scratch. Second, the model 
can also be presented to the user for manual interactive refnement. 

2.3 Cognitive Bias and Human Reliance in AI 
In human-AI interaction, as people are generally inclined to en-
gage in System 1 thinking [47], there are often various cognitive 
biases, including common anchoring bias [76], confrmation bias 
[74], automation bias/aversion [22], availability bias [97], illusion 
of validity [91], etc. These cognitive biases can (negatively) afect 
people’s trust in AI. For example, after observing model behav-
iors early on, people often have an anchoring bias towards AI’s 
suggestions [76], leading to over-rely on AI’s suggestions. People 
are also often brought by the illusion of validity of the informa-
tion displayed by AI [29, 48, 54]. For example, Kaur et al. [48] fnd 
that the existence of explanations could mistakenly lead to data 
scientists’ over-confdence that the model is ready for deployment. 
Eiband et al. [29] fnd that even placebic explanations, which do 
not convey useful information, invoke a similar level of trust as 
real explanations do. 

In order to reduce the adverse efects of cognitive biases on 
human-AI cooperation, existing works have proposed some mitiga-
tion methods. One way is to provide interventions to nudge people 
to engage deeper in System 2 thinking [47]. For example, research 
on “cognitive forcing” has explored methods for pushing human 
decision makers to spend more time deliberating about problems 
[14, 78, 82], such as asking humans to make independent predic-
tions before seeing AI’s suggestions [14] or employing a “slow 
algorithm” [78]. These cognitive forcing functions are found to be 
able to decrease humans’ AI reliance. Other mitigation methods 
include enabling people to actively explore the data [91, 97], explain-
ing clearly and training users on how to use explanations/AI [53], 
giving arguments for non-predicted outcomes [15], monitoring 

user’s anchored status [28], showing prior probabilities of outcome 
[97], etc. 

In this work, we “leverage” humans’ cognitive biases to help 
us calibrate humans’ trust by incorporating cognitive biases into 
adaptive interaction design. Specifcally, we do not blindly increase 
or decrease people’s trust in AI. Instead, we regulate the distribution 
of people’s trust according to the CL of both parties. When AI’s 
CL is higher, we utilize anchoring bias to promote people’s trust in 
AI, and when human’s CL is higher, we deploy cognitive forcing to 
promote human-independent analytical thinking. 

3 PHASE I: MODELING HUMANS’ 
CORRECTNESS LIKELIHOOD ON A GIVEN 
TASK INSTANCE 

3.1 Overall process of human correctness 
likelihood modeling 

We investigate our human correctness likelihood (CL) modeling 
method in a typical AI-assisted decision-making scenario, where 
ground truth data is available for a training dataset but not for the 
current task case. To promote more appropriate human trust in the 
AI-assisted decision-making process, the frst phase of this work is 
to estimate humans’ capabilities at a task instance level. Inspired by 
research in cognitive science which suggests that humans make de-
cisions by weighing similar past experiences [11, 16, 40, 47, 71], we 
propose to estimate humans’ CL at a given task instance [69] based 
on their past performance in similar task instances. However, it is 
often difcult to obtain enough decision data to compute human 
performance in similar task instances, especially for a new task. 
To solve this problem, we design a method frst to approximate a 
human’s decision-making model (i.e., to get a mapping from task 
input to human decision). Then we apply this model to predict 
the human’s possible decisions in similar task instances and cal-
culate their potential accuracy in these instances compared to the 
ground truth. To answer the question, RQ1: How to efectively 
approximate a human’s decision-making model?, we propose 
to combine data-driven initialization and interactive modifcation 
to derive the possible decision rules employed by each individual. 
Our proposed human capability modeling method goes through 
four steps, as illustrated in Figure 2. 

• Step 1: Collect user predictions: we gather the decision data of 
people on a small number of sampled task instances. 

• Step 2: Generate initialized decision models: we ft a classic deci-
sion tree model to infer humans’ decision-making models and 
generate initial decision rules [37, 93]. 

• Step 3: Interactively modify decision models: due to the limited 
amount of training data, the initial model generated may not 
refect people’s actual decision-making model well. Therefore, 
we design an interactive interface for users to revise the initial 
model to make it better align with their inner decision-making 
process. 

• Step 4: Apply decision models to estimate the correctness likeli-
hood of new cases: We apply humans’ approximated decision-
making model to the neighbor cases of the current task case 
and compute humans’ possible performance. Then, based on a 
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Step 1: Collect user 
predictions

Step 2: Generate initialized 
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Age < 30 & Work hour < 35  ≤ 50k/y

Age < 30 & Education < 13  ≤ 50k/y

…

Correctness 
likelihood on current 

task instance

Age > 30 & Education > 13  > 50k/y

Age > 30 & Occupation is Manager  > 50k/y

Age < 30 & Work hour < 35  ≤ 50k/y

Age < 30 & Education < 13  ≤ 50k/y

System-initialized decision rules Interactive modification

…

Figure 2: The human capability modeling process. The whole process goes through four steps. 

distance-weighted method (see Eq. 1), we can estimate humans’ 
CL in the current case. 

In the following subsections, we present our task setup and intro-
duce the details of the four steps through two small-scale studies 
(Study I.1 focusing on Steps 1-3 and Study I.2 focusing on Step 4). 

3.2 Task setup 
3.2.1 Task selection. We chose income prediction as our testbed 
which has been used in several previous studies on AI-assisted 
decision-making [39, 43, 87, 106]. In this task, a participant was 
asked to predict whether a given person’s annual income would ex-
ceed $50K or not based on some demographic and job information. 
The data used for the task came from the Adult Income dataset 
[50] in UCI Machine Learning Repository. The entire dataset has 
48,842 instances of surveyed individuals, each described by 14 at-
tributes such as age, occupation, etc. The actual annual income 
was recorded and binarized (greater/less than 50K) as the ground 
truth for assessing our participants’ prediction accuracy. This task 
is suitable for our study since it requires little domain expertise and 
imposes relatively limited risks, and thus is amenable for non-expert 
participants [39]. 

To ensure the task has a reasonable complexity for lay people to 
establish a decision-making model, following [39, 106], we selected 
the fve most important features out of the 14 attributes as the 
fnal attributes presented to participants, determined by the feature 
importance values based on the feature permutation method [1]. 
These attributes include age, year of education, occupation, mar-
ital status, and work hours per week. This number of features is 
suggested to be appropriate for non-expert users to form a decision-
making model by experiencing several task samples (e.g., Bansal et 
al. [4, 5] established users’ mental models of AI’s error boundaries 
using a three-feature task). Future work can be extended to simulate 
humans’ decision-making models in more complex tasks. 

3.2.2 AI model. Same as [39], we chose a logistic regression model 
(using a default setting from sklearn) as our AI model to assist 
humans in making decisions in the selected income prediction task. 
As the logistic regression model directly optimizes Log loss, it can 
return well-calibrated confdence scores [80]. Calibrated confdence 
of a model can provide an accurate probability of correctness for 
the model’s predictions. For example, if a model makes a prediction 

on a sample with 0.6 confdence (calibrated), there will be a 60% 
chance that the prediction is correct, or equivalently, if a model 
makes predictions on M samples with 0.6 confdence, there will 
be around 0.6 * M samples that are actually correctly predicted. 
Note that some ML classifers (such as SVM and neural networks) 
cannot directly generate calibrated confdence scores [6, 41, 106], 
so post-hoc calibration is required (such as Platt Scaling or Isotonic 
Regression [41, 80]). 

Our model was trained based on a 70% random split of the orig-
inal dataset, while the prediction trials given to the participants 
in the experiment were drawn from the remaining 30%. For any 
new task cases in the testing set, our human capability estimation 
method will retrieve similar cases from the training set to predict 
humans’ CL. 

3.2.3 Task cases selection. The selected task cases for the user stud-
ies satisfy several criteria. First, to make the human-AI teaming 
setting more suitable for pursuing complementary performance, 
humans’ independent accuracy on these samples should be compa-
rable to that of AI [6, 106]. Second, these cases should follow the 
data distributions in the test set [100]. Third, AI’s confdence scores 
in these samples should be well-calibrated to refect its actual CL 
[100, 106]. 

To keep the user studies at a proper length without causing fa-
tigue in participants, we selected 40 task cases and split them into 
two batches. The frst 20 samples are used to get humans’ decision 
data and build their decision-making models computationally. The 
remaining 20 samples are used in the main AI-assisted decision-
making task. While the two batches of samples were fxed for all 
participants, the presentation order of samples inside each batch 
was randomized. To make AI performance comparable to humans’ 
independent accuracy, following [6], we frst conducted an addi-
tional pilot study to determine the average prediction accuracy of 
unassisted humans over 20 randomly picked task instances, which 
was around 70% according to the results. We then selected 40 task 
samples over which the AI model had a 70% accuracy with equal 
positive and negative labels, as well as equal false positive and false 
positive rates (similar setting as [6]). To guarantee the represen-
tativeness of the selected samples, we made sure that most of the 
common values of each feature were included in these 40 samples. 
We also carefully controlled the AI’s confdence in these instances 
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Figure 3: Two decision-making model creation interfaces. (A) The interactive decision tree. (B) The interactive rule set. 

to make it align with AI’s actual CL. Specifcally, out of the 20 sam-
ples in each batch, half of them had a confdence score lower than 
0.7 (representing low-confdence samples, with an average value 
of 0.6), of which six samples were correctly predicted by the AI 
(the CL was 6/10 = 60%). Another half of them had a confdence 
score higher than 0.7 (representing high-confdence samples, with 
an average of 0.8), of which eight samples were correctly predicted 
by the AI (the CL was 8/10 = 80%). 

Once the AI models and task cases were ready, we conducted a 
lab study to explore the suitable interface for non-expert users to 
interactively revise their decision-making models. Note that one 
may ask, why do we need to model human correctness likelihood 
(CL)? Just as AI’s confdence can indicate its CL, cannot people’s self-
confdence represent their CL? We carried out a small-scale user 
study and found that participants had poorly-calibrated subjective 
confdence. That is, the correlation between their actual accuracy 
and self-reported confdence is statistically unrelated, suggesting 
that self-reported confdence is not a reliable human CL indicator. 
The details can be found in the supplementary material. 

3.3 Study I.1: Comparison of interfaces for users 
to specify their decision-making models 

According to existing research, rules are considered to be an ap-
propriate mechanism for approximating human decision-making 
processes [34, 35, 37]. Humans, on the other hand, often make judg-
ments based on decision tree-like structures [23]. Hence, to compare 
the efcacy of these two representations, we design two interfaces 
for displaying and interactively updating humans’ decision-making 
models (i.e. interactive decision tree versus interactive rule set). Both 
interfaces share the same initialization method where we ft a deci-
sion tree model (default setting from sklearn) on the human decision 
data from the frst 20 task cases. We chose the decision tree model 
instead of a black-box model because it can be easily understood 
even by people without machine learning knowledge [23]. 

These two interfaces are shown in Figure 3. The interactive de-
cision tree interface (Figure 3 (a)) directly displays the decision 

tree model generated in the backend. On the interface, humans 
are frst shown a tutorial about how to interpret and modify the 
decision tree (not included in the fgure to save space). Then, they 
can browse their past decision data on the frst 20 instances to re-
call their decision-making rationale (Figure 3 (1)). Finally, they can 
add, delete or modify any tree node to refect their actual decision 
process. The interactive rule set interface (Figure 3 (b)) presents a 
set of if-then rules converted from the decision-tree [61]. With this 
interface, similarly, humans frst view a tutorial, next revisit their 
historical decision data, and fnally they can add, delete, or modify 
any rules or specifc conditions within a rule (Figure 3 (2)). 

3.3.1 Study procedure and participants. We conducted a between-
subjects study, recruiting 20 participants (8 Female, 12 Male, average 
age: 27) from a local research university to build their decision mod-
els using the assigned interface (10 for each condition). After giving 
their consent, they followed a tutorial to familiarize themselves 
with the income prediction task. Then, they proceeded to fnish 
20 prediction tasks (the frst batch) without the help of AI. Upon 
completion, they were asked to use the assigned interface to create 
their decision model. We mainly focused on their qualitative per-
ceptions of the interface, so we carried out an exit interview with 
them at the end of the study. 

3.3.2 Results. According to the interview results, seven out of the 
10 participants using the interactive decision tree interface reported 
that their actual decision processes could not be well represented 
by a decision tree. For example, P3 (Male, 30, little knowledge in 
AI) noted, “My actual decision process was not a single (decision) tree. 
Sometimes, I use ‘age’ as the frst criterion, but sometimes, I use the 
‘year of education’ as the main factor. ” Furthermore, three out of 
the 10 participants found the decision tree to be visually complex. 
For instance, P9 (Male, 26, little knowledge in AI) mentioned that 
“The tree is hard for me to read in a short time.” In comparison, the 
interactive rule set interface was considered to be more visually 
interpretable and more in line with participants’ decision-making 
processes. Therefore, in the fnal version, we employ the interactive 
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rule set interface for participants to revise their decision-making 
models interactively. 

Based on participants’ feedback, we also improved the interactive 
rule set interface. For each rule, we provide a “check” button, click-
ing on which allows users to check how many of their historical 
decisions confict with this rule and whether this rule conficts with 
other created rules (Figure 3 (3)). 

3.3.3 Discussion. While a decision rule set is better suited for simu-
lating human decision-making models, it also has some limitations. 
First, there are sometimes edge cases that are difcult to cover by 
a limited number of decision rules [35]. For these cases, we now 
use the system-initialized model to cover. Second, some users make 
decisions based on intuition, which can not be formulated as an 
explicit set of rules. Third, it may be difcult for non-expert users 
to form accurate decision rules by experiencing only a small set of 
task samples. We will discuss these in more detail in Sec. 6.6. 

3.4 Study I.2: Performance testing of our human 
correctness likelihood estimation method 

Based on the user-revised decision-making model, we can get their 
possible predictions for � similar task instances retrieved from 
the training set. And by comparing their possible predictions and 
ground-truth labels (already known), we can compute humans’ po-
tential performance on these task instances to obtain an estimated 
CL for the current task instance. We empirically set the number � 
to 10 in this work to achieve a trade-of between sufcient similarity 
and coverage. If the number is set too large, a lot of dissimilar sam-
ples will be calculated and if the number is set too small, the sample 
size is insufcient to obtain a stable accuracy value. Note that the 
number can be diferent in other tasks with diferent properties. 
We calculate human correctness likelihood ��� on the current task 
instance �� based on the following equation. 

Í � �   ˆ� = � 
� 1 (=  � · �� � � , 1, 0 �) + (1 −  � ) · 50% 

��� = ,
� (1)

� 
�ℎ���  �� = . 

� � + � (x� , x )�  

where �̂� is the human possible prediction in the �-th neigh-
bor instance � � � , and �� is the ground-truth label of that instance. 
�� (�̂� = �� , 1, 0) means if �̂� = �� , returns 1, otherwise, returns 0. 
And � � is the weight of each neighbor instance, � � (x� , x� ) is the 
Euclidean distance between the current task instance �� ’s feature 
vector x and  

�  its neighbor instance � � �
� ’s feature vector x� . We can 

see that the weight is negatively correlated with the distance. More 
similar neighbor instances will have a greater impact on perfor-
mance computations. For example, if a human can make a correct 
prediction for a very close neighbor instance (  � �(x� , x� ) → 0), it 
will contribute 1/� to CL. If a human makes a correct prediction for 
an (extremely) distant task instance ( � � (x� , x  ) → ∞� ), the distance 
factor will discount its contribution and move �� closer to 0 (i.e., it 
only contributes 0.5/� to CL, which is equal to random guessing 
in binary-classifcation tasks). We set the parameter � to 2 based 
on the median Euclidean distance between any two instances in 
the training set. While other values may be more appropriate, we 
leave this to future work. 

Combining the human CL and AI CL (indicated by calibrated AI 
confdence), for a new task instance, we can estimate which member 
in the human-AI team has a higher correctness likelihood. Next, 
we verify the efectiveness of our method with two objectives. First, 
the estimated human CL should be signifcantly correlated with 
the actual human accuracy. Second, recall that a key purpose of our 
approach to modeling human capabilities is to better distinguish 
when to trust the AI and when to trust themselves. So we focus on 
the complementary region, where for each case, only one member 
of the human-AI team can make a correct prediction. If the human 
is estimated to have a higher CL on a case, this case will be labeled 
“human better”; otherwise, “AI better”. In comparison, in the AI 
confdence-based method, same as previous works [106], when 
the AI’s confdence exceeds the set threshold (0.7), we regard this 
case as “AI better” and otherwise “human better”. We quantify the 
efectiveness as the ������ of complementary cases, i.e., the ratio of 
complementary cases that are correctly predicted by our method 
out of the whole complementary region. We didn’t focus on the 
��������� because in the case where both humans and AI can make 
correct or incorrect predictions, whoever has a higher likelihood 
won’t lead to signifcantly diferent consequences. 

3.4.1 Study procedure and participants. In the same setting as 
Study I.1 (Sec. 3.3), we conducted a crowdsourcing study to com-
pare the efectiveness of our method and the AI confdence-based 
method. We recruited 30 participants 1 from Prolifc  (18 Female, 11 
Male, 1 non-binary, aged from 21 to 61, 35 on average, all reside 
in the US). The study procedure was the same, except that we also 
asked participants to complete the remaining 20 tasks after creating 
their decision rules (again, without the assistance of AI, so that we 
could measure humans’ independent correctness and test whether 
our human CL modeling method is efective). 

3.4.2 Results. We found that based on the auto-generated human 
decision-making model, the prediction accuracy of participants’ 
decisions on the last 20 task instances was 77.5%. In comparison, 
based on the human-revised decision-making model, the accuracy 
was 80.7%. This shows a slight but not signifcant improvement. 
We speculate that this is because the default decision tree model 
is already close to the human decision-making process, so partic-
ipants can only make minor adjustments to the initialized rules. 
Following [26, 83], we calculated the Pearson correlation between 
our estimated humans’ average CL and their actual accuracy on 
the last 20 tasks. The result showed a signifcantly positive correla-
tion (� =0.482, �<.01). Furthermore, we found that our human-AI CL 
method could recall 76.4% of the complementary region on average, 
while the AI confdence-based method could recall 66.7% of the 
complementary region on average. Paired T-tests showed signif-
cant diferences (�<.05). The results validated that our method was 
more efective than the traditional AI confdence-only methods at 
guessing the human-AI CL on complementary task region/cases. 

3.4.3 Discussion. We note that our method highly relies on the 
accuracy of the approximated human decision-making models. Be-
sides, although our method is better than the AI confdence-based 
method in identifying complementary cases, the improvement is 

1www.prolifc.co 

https://1www.prolific.co


CHI ’23, April 23–28, 2023, Hamburg, Germany Shuai Ma, et al. 

not very large. We speculate it might be due to the limited comple-
mentarity of humans and AI, which afects the superiority of our 
method. We will discuss this issue in Sec 6.2. 

4 PHASE II: COMMUNICATING HUMAN’S 
AND AI’S CORRECTNESS LIKELIHOOD TO 
PROMOTE APPROPRIATE TRUST 

The second phase of this work is to explore how to integrate the 
modeled human-AI correctness likelihood (CL) to empower the 
AI-assisted decision-making process. Specifcally, we propose three 
diferent strategies to exploit CL, i.e., Direct Display, Adaptive Work-
fow, and Adaptive Recommendation. Then, through a between-
subjects experiment, we aim to investigate two research questions: 
RQ2: How do diferent CL exploitation strategies afect hu-
man trust appropriateness and team performance? and RQ3: 
How do diferent CL exploitation strategies afect humans’ 
perceptions and user experiences in the decision process? 

4.1 Experimental Conditions and Interface 
Design 

To help people realize when to refer to the AI’s suggestion and when 
to rely on themselves, one intuitive mechanism is to explicitly dis-
play the human and AI CL information to human decision-makers. 

• Direct Display: We directly present the estimated human and AI 
CL and the AI’s recommendations to the human (Figure 4 C) in 
this condition. To be more specifc, on the experimental website, 
alongside the profle area (the fve attributes of the person to 
predict, Figure 4 A1), the system illustrates the estimated CL of 
the human and AI side by side (Figure 4 C3). At the top of this area 
is a summary sentence, "According to the system’s estimation, 
in this task case, the AI (you) might have a higher probability of 
making a correct decision than you (the AI)". Below are two gauge 
graphs showing the CL values of humans and AI, respectively, 
followed by the recommendation (i.e., the predicted income) from 
AI. Finally, people need to input their fnal decision (Figure 4 C4). 

In this condition, it is up to humans to decide how to interpret the 
CL information and whether to trust the AI. However, we acknowl-
edge that the estimates of humans’ and AI’s capabilities are far from 
perfect, and relying on this information to assess AI’s suggestions 
may have serious consequences, especially in high-risk areas. For 
example, in a clinical decision-making scenario, physicians may 
develop false self-confdence in their diagnosis if our model overes-
timates their abilities. To mitigate this issue, we propose two other 
implicit CL exploitation strategies based on theories in cognitive 
science. On the one hand, according to the anchoring bias theory in 
decision-making [14, 30, 31, 33, 82], if human decision-makers have 
access to anchors (such as AI’s opinions), they are likely to diminish 
further exploration of alternative hypotheses and increase humans’ 
reliance on AI. On the other hand, research on “cognitive forcing” 
has explored methods for pushing human decision-makers to spend 
more time deliberating about problems [14, 78, 82]. These cogni-
tive forcing functions are found to be able to decrease humans’ 
reliance on AI. Based on these theoretical supports, we propose the 
following condition. 

• Adaptive Workfow: In this condition (Figure 4 D), we adap-
tively change the order of human and AI decisions based on the 
estimated human and AI CL. If the predicted human CL is higher 
than that of the AI, our interface will frst ask human users to 
input their initial decision and then reveal the AI’s recommen-
dation (Figure 4 D5). Likewise, if the AI’s CL is estimated to be 
higher than the human’s, our interface will directly present the 
AI’s suggestion to the human (Figure 4 D5 will not be displayed). 
Both cases require the human to make the fnal decision after 
reviewing the AI’s recommendations. 

Another implicit way to leverage cognitive forcing to promote 
appropriate trust is not to show AI suggestions to people if they 
have higher CL than the AI. However, this will prevent people 
from taking advantage of AI’s assistance in such cases. A trade-
of solution is to provide AI’s explanations but not the prediction 
result to users when humans have a higher CL than AI so that 
they have to make their own decisions. Garhos et al. [36] found 
that people engaged more in analytical thinking based on their 
own knowledge if AI’s explanations were shown without concrete 
recommendations. Therefore, we propose the following condition. 

• Adaptive Recommendation: In this condition (Figure 4 E), the 
AI shows the explanation of its prediction (generated by LIME 
[86], a widely used explainable AI method) by default. We control 
the display of AI’s recommendation based on the comparison 
between the estimated human CL and AI CL. If the AI’s CL is 
higher, our interface will display AI’s recommendation (Figure 4 
E6) along with its explanation (Figure 4 E7). If the human CL is 
higher, our interface will not disclose the AI’s recommendation 
to users (Figure 4 E6 hidden). 

Besides the above-mentioned three conditions, we also include 
two baseline conditions following [6, 82]. 

• Human Only: In this condition (Figure 4 A), humans must make 
their own decisions independently without any AI assistance. 

• AI Confdence: In this condition (Figure 4 B), humans are pre-
sented with AI’s recommendation and its calibrated confdence 
but without human CL information (Figure 4 B2). We incorpo-
rate this baseline because it is a broadly acknowledged design to 
calibrate humans’ trust in AI-assisted decision-making [6, 106]. 

The interfaces were tested through a pilot study to ensure that 
the workfow was clear for participants to follow. 

4.2 Study Design 
We employ a between-subjects study design with the fve conditions. 
The study is approved by the University IRB. 

4.2.1 Task and Procedure. We adopted the same task as in Phase 
I (Sec. 3.2), i.e., predicting whether a person’s annual income ex-
ceeds $50K. Participants went through fve stages during the study 
(shown in Figure 5): (1) Introduction: After obtaining the consent 
of participants, we provided a tutorial walk-through to familiarize 
them with the task where we detailed the meaning and value range 
of each attribute in the profle table to the participants. For each 
attribute, we presented a graph showing the distribution of the cor-
responding income in the entire dataset, giving participants a basic 
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Figure 4: Interface of diferent conditions. (A) Human Only. (B) AI Confdence. (C) Direct Display. (D) Adaptive Workfow. (E) 
Adaptive Recommendation. The interfaces of all conditions share a similar layout: the left side is a person’s profle area and 
the right side is a decision-making area. To save space, we do not draw the person profle area repeatedly in Figure 4 (C), (D), (E). 
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Figure 5: Procedure of the experiment. Participants go through fve stages in the whole study. 

understanding of the salary situation. We inserted two attention-
check questions at the end of the tutorial to help flter out partici-
pants who did not read the introduction carefully. After the tutorial, 
we provided participants with two training examples with ground 
truth. (2) First batch of 20 tasks: Next, participants proceeded to 
complete the frst 20 task cases independently (no AI advice or 
ground truth information was displayed). (3) Interactive decision 
rule creation: Participants entered the decision rule creation page 
(recall Sec. 3.3 for details). (4) Second batch of 20 tasks: Once done 
customizing their own decision rules, participants moved on to the 
last 20 task cases, this time, with AI’s assistance (except for Human 
Only condition). Depending on the assigned conditions, diferent 
interfaces were presented to the participants (as shown in Figure 4). 
(5) Exit survey: Finally, participants were asked to fll out an exit 
survey in which we collected basic demographic information as 
well as subjective measures and open-ended feedback about their 
perceptions in the decision-making process, which are described 
later in Sec. 4.3. 

4.2.2 Participants. We recruited 300 participants (60 for each con-
dition) from 1 Prolifc . To ensure high-quality responses, all partici-
pants met the following criteria: (1) residing in the United States 
(as the task was to predict income for adults in the United States); 
(2) at least 99% approval rate for previous submissions; (3) using 
English as the frst language; (4) owning a bachelor’s degree or 
above; and (5) using a desktop computer for the experiment. The 

study followed a between-subjects design, so we did not allow any 
repeated participation. In total, we got 293 complete submissions. 
After fltering based on the attention-check questions, we obtain 
289 valid responses (Human Only: 59, AI Confdence: 59, Direct 
Display: 59, Adaptive Workfow: 56, Adaptive Recommendation: 56). 
Among the fnal participants, there were 174 self-reported male, 
110 female, and 5 non-binary. A total of 77 participants were aged 
18-29, 116 aged 30-39, 45 aged 40-49, 28 aged 50-59, and 23 aged 
over 59. Participants also rated their knowledge of artifcial intelli-
gence: 40 had no knowledge, 205 knew basic concepts in AI, 43 had 
used AI algorithms, and one was an expert in AI. To motivate high-
quality work, in addition to the base payment, we gave participants 
a $0.50 bonus if their overall accuracy exceeded 80%. The entire 
study lasted about 20 minutes. The average wage for participants 
was about $9.34 per hour. 

4.3 Evaluation Metrics 
4.3.1 Measures for RQ2. We investigate the efects of diferent 
conditions on humans’ trust appropriateness and human-AI team 
performance through two main measurements. (1) Human-AI Agree-
ment [6, 106]: the fraction of tasks where the participant’s fnal 
decision agreed with the AI’s recommendation, whether it is right 
or wrong. (2) Team Performance [6, 82, 100, 106]: the fnal decision 
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accuracy. We also collected participants’ Perceived correctness likeli-
hood (CL), where in each task instance, we asked participants which 
one (human, AI, or both) they thought had a higher CL. 

4.3.2 Measures for RQ3. Here, we focus on participants’ experi-
ences and perceptions in diferent conditions. Specifcally, referring 
to and adapted from related works, we investigate the following 
subjective measures as 7-point Likert scale questions in the exit sur-
vey (1: Strongly Disagree, 7: Strongly Agree): (1) Trust in AI [14, 39]; 
(2) Confdence in the decision-making process [52, 83]; (3) Perceived 
complexity of the system [14]; (4) Mental demand [14, 39, 42, 52]; (5) 
Perceived autonomy [44]; (6) Satisfaction [39]; (7) Future use [12]; (8) 
Trust in the estimation of human-AI CL; (9) Perceived usefulness of 
estimation of human-AI CL [56]; (10) Perceived helpfulness to decide 
when to trust the AI [56]); and (11) Acceptance of estimation of their 
CL. Besides these questions, we also asked participants open-ended 
questions about how they used and perceived the communicated 
human-AI CL, and how their decision-making processes were af-
fected by diferent interface designs. Detailed questions can be 
found in the supplementary material. 

4.3.3 Analysis Methods. We conducted mixed-methods analyses 
on the aforementioned metrics. For quantitative analysis of the ob-
jective data for RQ2 and participants’ subjective data for RQ3, since 
most of the data did not follow a normal distribution, we carried 
on non-parameter tests. Specifcally, for pair-wise comparison, we 
ran Mann-Whitney U Test or Wilcoxon Signed Ranks Test based 
on whether the sample was from the same group of participants. 
And for analysis among more than two groups of participants, we 
ran Kruskal-Wallis Test and post-hoc analysis with Bonferroni cor-
rection. For qualitative analysis, two authors coded the open-ended 
feedback via inductive thematic analysis [45]. The fnal themes 
were discussed and harmonized over several iterations, and specifc 
examples were identifed from the source texts for demonstration 
in this paper. 

5 RESULTS 

5.1 Efects of CL Exploitation Strategies on 
Team Performance and Human Trust in AI 

We organize the results into two parts. In the frst part, we analyze 
the participants’ overall team performance and trust in AI. In the 
second part, we dig deeper into the data and analyze the results 
according to diferent situations (e.g., diferent human-AI CL). All 
results are organized into “Findings” for easy reading. 

Part 1 
Finding 1: The trend of human trust in AI was consistent 

with the trend of estimated human-AI CL in the proposed 
three conditions. Since the basic intention of our three designs 
is to make people rely more on the member with higher CL in the 
human-AI team, we want to see if our approaches made people trust 
AI more when the AI’s CL was higher and trust AI less otherwise. 
Figure 6 shows the human-AI agreement in diferent human-AI 
CL situations under three conditions. Results showed that all three 
conditions made people’s agreement with AI signifcantly higher 
when AI’s CL was higher than that when the human’s CL was 
higher (�<.001 in all three conditions). 

Direct
Display

Adaptive
Workflow

Adaptive
Recommendation

0.7

0.8

0.9

1.0 Human-AI Agreement
AI's CL is higher Human's CL is higher

Figure 6: Human-AI agreement in diferent conditions with 
diferent human-AI CL situations (with mean and 95% conf-
dence interval). We can see that when the AI’s CL is higher 
than the human’s, participants tend to agree with AI more 
in the fnal decision. 

Finding 2: The proposed three CL exploitation conditions 
achieved complementary performance while the AI Conf-
dence condition did not. Figure 7 (a) shows the overall team per-
formance (i.e., the accuracy of humans’ fnal decisions) in all condi-
tions. The team performance in Direct Display (�=0.758, ��=0.078), 
Adaptive Workfow (�=0.767, ��=0.085), Adaptive Recommenda-
tion (�=0.754, ��=0.072) surpassed both AI alone (0.7) and Human 
Only (�=0.721, ��=0.113). However, the team performance of AI 
Confdence (�=0.720, ��=0.099) did not outperform Human Only. 
From Figure 7 (b), we can see that although AI Confdence made hu-
mans agree with AI more when AI’s recommendation was correct, 
it also made humans agree with AI’s wrong recommendation more. 
This fnding is consistent with previous work revealing that show-
ing AI confdence does not necessarily improve team performance 
[82, 106]. Compared with AI Confdence, the proposed CL exploita-
tion methods achieved marginally to signifcantly higher team 
performance (Direct Display: �=.078; Adaptive Workfow: �=.027; 
Adaptive Recommendation: �=.078). 

Finding 3: Humans in the proposed three CL exploitation 
conditions trusted the AI more appropriately when the AI’s 
recommendation was wrong. As shown in Figure 7 (b) (the red 
bars), the human-AI agreement in AI Confdence was signifcantly 
higher than Adaptive Workfow (�=.017), and Adaptive Recommen-
dation (�<.001), and it was marginally higher than Direct Display 
(�=.07). Note that when AI is wrong, a lower agreement with AI is 
better. These results suggest humans’ less over-trust in AI in our 
proposed CL exploitation conditions. Through qualitative feedback 
from participants, we found that our three designs prompted people 
to rely more on their own thoughts when AI’s advice was wrong 
(at this time, AI’s CL was often lower than human’s). Specifcally, 
in Direct Display, displaying a higher human CL made them more 
confdent in their own judgment. For example, P26 (49, female, 
knew basic knowledge of AI) said, “Sometimes the AI’s opinion dif-
fered from mine. When I saw that my (CL) value was higher than 
the AI’s, it confrmed my opinion.” While in Adaptive Workfow, in 
most cases, when participants had to make their own judgment 
frst, then did not change their decision later, even if the AI’s recom-
mendation was the opposite. For example, P16 (31, male, knew or 
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Figure 7: Overall team performance and trust appropriateness (with average accuracy and 95% confdence interval) in diferent 
conditions. (A) The overall team performance in fve conditions. The proposed three communication strategies achieve 
complementary performance compared with AI accuracy (0.7) and Human Only (0.72). (B) Humans’ trust appropriateness which 
is indicated by human-AI agreement when AI gives correct recommendations and when AI gives wrong recommendations. 

used AI algorithms) mentioned “I had made careful analysis before 
the AI’s suggestion, and I would stick to my own opinion.” Similar 
phenomenon can be found in Adaptive Recommendation. P4 (40, 
female, no knowledge of AI) said, “AI didn’t tell me any answers, I 
could only make decisions according to my own thoughts.” 

However, when the AI’s recommendation was correct (the green 
bars in Figure 7 (b)), we did not observe signifcant diferences in 
human-AI agreement between the three proposed conditions and 
AI Confdence baseline. We infer this might be because the task 
instances where humans and AI could make correct predictions 
were highly overlapped. It can be seen from Human Only that in 
the case where AI gave correct advice, even if people did not get 
any assistance from the AI, their performance also reached 80% 
(agree with AI on 80% cases), which indicates the complementarity 
of human and AI in such situations was relatively weak, and the 
room for improvement was thus limited. 

Part 2 
Finding 4: Team performance was better when humans’ 

CL was higher. In the proposed three CL exploitation conditions, 
we show participants diferent information or change the decision-
making workfow based on human-AI CL. Therefore, we want to 
analyze how the team performance difers in diferent CL situations 
and diferent AI recommendation correctness. Overall, as shown in 
Figure 8 (a), when the human CL was higher, the team performance 
was signifcantly better than when the AI’s CL was higher (�<.001 
in all conditions). 

Specifcally, as shown in Figure 8 (b), (1) when AI’s CL was higher 
& AI’s recommendation was correct, there was no signifcant difer-
ence in team performance between the three conditions. (2) When 
AI’s CL was higher & AI’s recommendation was wrong, there was 
still no signifcant diference in team performance between the 
three conditions. (3) When human’s CL was higher & AI’s recom-
mendation was correct, compared with Adaptive Recommendation, 
the team performance in Direct Display and Adaptive Workfow 
was signifcantly higher (�<.05, �<.01 respectively). This might be 
because in Adaptive Recommendation condition, when the human’s 
CL was higher, the AI’s suggestions were not shown, thus partic-
ipants could not get the help of the AI’s correct suggestions. (4) 
When human’s CL was higher & AI’s recommendation was wrong, 

the team performance in Direct Display was marginally lower than 
Adaptive Workfow (�<.1) and signifcantly lower than Adaptive 
Recommendation (�<.05). 

Furthermore, as expected, we found that when the AI’s recom-
mendation was wrong, the team performance when the human’s 
CL was higher was signifcantly better than when the AI’s CL was 
higher (�<.001 in all conditions). But to our surprise, when the 
AI’s recommendation was correct, the team performance when the 
human’s CL was higher was signifcantly better than when the AI’s 
CL was higher, Direct Display (�<.05); Adaptive Workfow (�<.01); 
Adaptive Recommendation (�=.058, marginally). The possible reason 
was that when AI’s CL was higher, since human’s capability was 
not as good as AI’s, people sometimes followed their own wrong 
judgments and thus under-trusted AI. 

Finding 5: The Direct Display and Adaptive Workflow con-
ditions worked better when the AI’s confdence level “con-
tradicted” the correctness of the AI’s recommendation. Since 
confdence is a probability, by nature, there is an insufciency of 
only utilizing AI confdence to calibrate humans’ trust. Specifcally, 
even if the AI’s confdence is higher than a threshold (we used 0.7 
following [100, 106]), AI may still output wrong predictions (de-
noted as High & Wrong region). Sometimes even if AI’s confdence 
is low, AI can give correct recommendations (denoted as Low & 
Correct region). We name these two situations as Confict region. We 
argue that just showing AI’s confdence is insufcient for people to 
recognize these situations. 

In general, as shown in Figure 9 (a), in Confict region, the team 
performance in AI Confdence was signifcantly lower than Direct 
Display (�=.002), Adaptive Workfow (�=.006). No signifcant difer-
ence was found between AI Confdence and Adaptive Recommen-
dation. Specifcally, as shown in Figure 9 (b), in the Low & Correct 
region, there was no signifcant diference between Direct Display, 
Adaptive Workfow and AI Confdence. The possible reason may be 
that the room for improvement is limited (already exceeds 90%). We 
noted that Adaptive Recommendation was signifcantly lower than 
AI Confdence (�=.032) probably because, in Adaptive Recommenda-
tion condition, people developed a mode of independent thinking 
without relying on AI advice because they often could not see AI 
advice, which might lead to under-trust. In the High & Wrong region, 
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Figure 8: Team performance (with average accuracy and 95% confdence interval) in diferent human-AI CL situations. (A) Team 
performance in diferent human-AI CL situations under three conditions. (B) We combine the correctness of AI suggestions 
with human-AI CL to analyze the team performance of the three conditions in diferent situations in detail. 
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Figure 9: (A) Team performance (with the mean accuracy and 95% confdence interval) when the AI’s confdence level is in 
confict (denoted as Conflict region) and consistent (denoted as Consistent region) with the correctness of the recommendation 
given by the AI. (B) Specifcally, we divide the Conflict region into (1) Low & Correct (AI’s confdence is below the threshold but 
the recommendation is correct) and (2) High & Wrong (AI’s confdence is above the threshold but the recommendation is wrong), 
and we divide the Consistent region into (1) Low & Wrong (AI’s confdence is below the threshold and the recommendation is 
wrong) and (2) High & Correct (AI’s confdence is above the threshold and the recommendation is correct). 

team performance in AI Confdence was signifcantly lower than 
Direct Display (�=.005), Adaptive Workfow (�=.022) and marginally 
lower than Adaptive Recommendation (�=.056). 

Finding 6: The Adaptive Workflow and Adaptive Recom-
mendation conditions worked better when the AI’s conf-
dence level was “consistent” with the correctness of the AI’s 
recommendation. Another category of task instance is called 
Consistent region, which includes (1) Low & Wrong (when the AI’s 
confdence is below the threshold and the recommendation given is 
wrong), and (2) High & Correct (when the AI’s confdence is above 
the threshold and the recommendation given is correct). 

In general, as shown in Figure 9 (a), the team performance in 
AI Confdence was marginally signifcantly lower than Adaptive 
Workfow (�=.074) and signifcantly lower than Adaptive Recommen-
dation (�<.001). But no signifcant diference can be found between 
AI Confdence and Direct Display. We then dig deeper into the two 
sub-regions. In the Low & Wrong region, the team performance in 
AI Confdence was marginally signifcantly lower than Adaptive 
Workfow (�=.088) and signifcantly lower than Adaptive Recom-
mendation (�<.001). But no signifcant diferences were observed 
between AI Confdence and Direct Display. In the High & Correct re-
gion, there was no signifcant diference between the AI Confdence 
baseline and any of the proposed three CL exploitation conditions. 

In addition to the above results, we also found that (1) the pro-
posed three conditions efectively conveyed the estimated CL in-
formation to humans, and (2) participants performed better on 
Consistent CL task instances (where their perceived human-AI CL 
was consistent with the system’s communicated human-AI CL). 
Detailed results can be found in the supplementary material. 

Summary. Overall, our proposed three CL exploitation meth-
ods promoted humans’ appropriate trust in AI (especially reducing 
humans’ over-trust and without increasing under-trust) and thus 
led to better team performance. Also, the proposed three CL ex-
ploitation strategies could efectively communicate the system’s 
estimated human-AI CL to humans. In addition, our methods out-
performed the AI Confdence baseline when the AI’s confdence 
contradicted its correctness. We also notice some pitfalls in our 
designs and will discuss them in Sec. 6.4. 

5.2 Efects of CL Exploitation Strategies on 
Human Perceptions and Experiences. 

To answer RQ3, we analyze participants’ subjective perceptions in 
diferent conditions in the exit survey, with a 7-point Likert scale (1: 
Strongly disagree, 7: Strongly agree). Figure 10 shows the results. 
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Figure 10: Participants’ subjective ratings in the exit survey (with the mean values and 95% confdence interval). 

Perceived complexity of the system. Overall, participants’ 
perceived system complexity is relatively low to neutral in the 
four conditions. Kruskal-Wallis test reveals signifcant diferences 
among diferent conditions ( 2� =19.223, �<.001). Post-hoc analysis 
shows that compared with AI Confdence, participants found the 
system signifcantly more complex in Direct Display (�<.001) and 
Adaptive Workfow (�<.01), perhaps because the two conditions 
display more information and require more complex workfow. 

Mental demand. Overall, participants were neutral about whether
the decision-making process was mentally demanding in the four 
conditions. There are no statistically signifcant diferences among 
diferent conditions. However, we observe a trend that Adaptive 
Workfow leads to high mental demand for participants. 

Perceived helpfulness to decide when to trust the AI. Over-
all, participants thought the estimated human-AI CL was helpful 
in making a reliance choice. Kruskal-Wallis test reveals signifcant 
diferences among diferent 2 conditions (� =7.039, �<.05). Post-hoc 
analysis shows that participants in Adaptive Workfow found the es-
timated human-AI CL marginally more helpful than Direct Display 
(�=.056) and Adaptive Recommendation (�=.073). 

Acceptance of estimation of their CL. Overall, participants 
thought the estimation of their CL was an acceptable approach. 
Kruskal-Wallis test reveals signifcant diferences among difer-
ent conditions ( 2� =9.162, �<.01). Post-hoc analysis shows that 
compared with Direct Display, participants in Adaptive Workfow 
thought the CL estimation was signifcantly more acceptable (�<.01). 

However, in terms of Trust in AI, Confdence in the decision-
making process, Perceived autonomy, Satisfaction, Future 
use, Trust in the estimation of human-AI CL, and Perceived 
usefulness of estimation of human-AI CL, there is no signifcant 
diference among diferent conditions. 

In summary, our three proposed conditions did not lead to sig-
nifcant diferences in participants’ perceptions other than the per-
ceived system complexity compared to the baseline condition AI 
Confdence. Of the three CL exploitation methods we propose, Adap-
tive Workfow seems to win a higher perception of its helpfulness 
and acceptance. This also echoes the results where Adaptive Work-
fow achieves the highest team performance across all conditions. 
However, we also note that the benefts come with increased sys-
tem complexity and mental demands, which is in line with previ-
ous studies [14]. Therefore, future work is suggested to explore 
the trade-of between efectiveness and user experience through 
human-centered empirical studies. 

 

5.3 Qualitative Analysis on How Participants 
Perceived, Used, and Were Afected by the 
Human-AI CL. 

To better understand the efects of diferent CL exploitation condi-
tions, in the exit survey, we left open-ended questions asking how 
participants perceived and utilized the human-AI CL (in Direct Dis-
play) and were infuenced by the adaptive decision-making process 
(in Adaptive Workfow and Adaptive Recommendation). Following 
an inductive thematic analysis process [45] (Sec. 4.3.3), two authors 
iteratively discussed and developed a codebook (Table 1). We high-
light the following fndings which explain the quantitative results 
afore-mentioned. 

Some participants doubted the displayed CL information 
and ignored it in the decision-making process. In Direct Dis-
play, 23% of participants doubted the displayed CL, and 25% ignored 
the CL in the decision-making process. This also echoes the results 
that even though the AI’s CL was higher, the human-AI agreement 
still did not reach 100% (Figure 6), and it might explain why when 
AI’s CL was higher and AI’s recommendation was correct, the team 
performance still did not reach 100% accurate (Figure 8 (b)). 

Most participants referred to or were infuenced by the dis-
played CL or CL-based adaptation. In Direct Display, 74% of the 
participants referred to CL, and in Adaptive Workfow and Adaptive 
Recommendation, 53% and 62% of participants were afected by the 
adaptive process respectively. This is consistent with the results 
that the three proposed methods could efectively afect people’s 
agreement with AI (Figure 6), and promote humans’ appropriate 
trust (Figure 7). 

Participants in Adaptive Workflow and Adaptive Recom-
mendation were forced to think independently. In Adaptive 
Workfow and Adaptive Recommendation, most participants were 
infuenced by the adaptive process to think independently when 
human CL is higher. This supports the reason why our methods 
helped reduce over-trust when AI was wrong (Figure 7 (b)). In 
particular, 62% of participants in Adaptive Recommendation would 
think independently when they could not see an AI recommenda-
tion, and 33% said they always thought on their own. This refects 
that participants formed a pattern of not relying on the AI, so the 
human-AI agreement is lowest when the AI’s CL is higher (Figure 6). 
This also explains why team performance is the lowest in Adaptive 
Recommendation in the Low & Correct region (Figure 9). For other 
fndings, please refer to our codebook (Table 1). 
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Table 1: Participants’ qualitative feedback in the open-ended questions. (Note that we excluded answers that just gave positive 
feedback but not specifc, such as “helpful”, “like it”, so the sum of the participants may not reach 100%.) 

Themes Defnitions and Examples #Participants 

How did participants perceive the estimated human-AI CL (in Direct Display)? 
Doubt the CL Some participants did not believe their abilities could be easily and accurately estimated. 14 (23%) 

“It was just a guess. The AI did not actually know about me so it did not seem reliable.” (P41) 
Feeling of confrmation If the human and AI had the same views and the human’s CL was high, it made participants 8 (13.5%) 

more confdent. 
“It made me feel very confdent on those that we all agreed on” (P3) 

Realize AI’s faws When people saw AI’s lower CL, they realized that AI was not always trustworthy. 6 (10%) 
“It made me recognize the AI could also be fawed on this task. I was better than the AI!”(P5) 

Decrease confdence Sometimes people became less confdent when the displayed CL of them was low. 5 (8%) 
“I began to question my capability somewhat when I viewed my estimated capability that 
was displayed low in some cases.” (P14) 

How did participants use the displayed human-AI CL to make a decision (in Direct Display)? 
Rely on the higher one They frst looked at the two CL values. If AI’s was higher, they followed AI’s recommen-

dation. Otherwise, they would make their own decisions. 
19 (32%) 

Just ignore the CL 

Refect upon it 

Refer to it in inconsis-
tent cases 

“The two charts (displaying human-AI CL) showed me when I should go with my own gut 
instincts and when I should rely on the AI instead.”(P12) 
Some participants only believe in themselves and completely ignore the CL. 
“I trusted my capability more, and did not put much stock in the displayed values”(P23) 
Some participants refected their decisions after seeing the estimated CL. 
“It helped me refect on my decision once I saw my score was not as high as I thought.”(P12) 
Some participants frst made their own decisions. If AI agreed with them, they would
ignore the CL. Otherwise, they mainly listened to the party with the higher CL. 

15 (25%) 

10 (17%) 

9 (15%) 

Refer to it on uncertain 
cases 

“I directly made the decision if I saw I and AI were the same. If the AI disagreed with me, I 
compared our abilities and chose the higher one to follow.”(P49) 
In cases where people were not confdent, they would refer to the CL. And when they
are confdent, they would ignore it. 

6 (10%) 

“It did help me make some decisions where I was unsure. However, I would not consider it 
when I felt I was totally correct.”(P39) 

How were participants’ decision processes infuenced by the adaptive workfow? 
Devote more cognitive When people were asked to make decisions frst, they devoted more cognitive resources 30 (53%) 
resources to the task itself, avoiding being infuenced by AI’s judgment. 

“I paid closer attention to what I thought was correct if the AI didn’t make a recommendation 
frst. If it did, then I more or less yielded to the AI’s judgment.”(P42) 

Little infuence Some participants regarded AI as a double-check or second opinion. 26 (46%) 
“It did not afect me much. I always treated the AI as a second opinion, no matter whether 
the AI allowed me to decide frst or not.”(P54) 

How were participants’ decision processes infuenced by the adaptive AI recommendation? 
Independent thinking Not showing AI’s concrete recommendation required people to think independently. 35 (62%) 

“When I looked at the AI’s recommendation, it was harder to trust myself and instead I 
found myself defaulting to the AI.”(P33) 

Little infuence It did not afect their decision because they often relied on themselves. 19 (33%) 
“No matter whether the recommendation is shown, I just used my own knowledge to analyze 
each piece of information presented (in the profle table).”(P44) 

6 DISCUSSION 
Through two phases of exploration, our study shows the promise 
of modeling humans’ correctness likelihood (CL) at a task instance 
level and leveraging human and AI CLs to promote appropriate 
human trust in AI-assisted decision-making. Based on our main 
fndings, we discuss several key issues for improving decision-
making with human-AI teams and the limitations of our work. 

6.1 Human Perceptions of Self-confdence and 
Understanding of AI’s confdence 

Maintaining proper self-confdence is critical for humans to 
establish appropriate trust in AI. Evidence shows that people’s 

confdence in themselves signifcantly afects whether they will 
take AI’s advice [19, 62, 96]. However, individuals’ confdence in 
their own capabilities may mismatch with their actual capabilities, 
leading to overconfdence or underconfdence for both experts and 
lay people [67–69, 95, 102]. From our results, in AI Confdence con-
dition, when AI ofered correct recommendations (also with high 
confdence), some participants, however, still followed their wrong 
judgments. This is because it is difcult for humans to maintain 
a “calibrated” self-confdence [69], thus overlooking AI’s sugges-
tions. We believe that if people could accurately perceive their 
abilities (e.g., correctness likelihood) and calibrate self-confdence 
accordingly, the collaboration between humans and AI will be more 
successful. The human CL modeling and communication method 
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proposed in this paper is an initial step toward this goal. We hope 
our work can inspire researchers to explore more efective ways to 
guide humans’ appropriate confdence in AI and in themselves. 

Humans’ understanding of probability afects the efec-
tiveness of trust calibration. Both the AI’s confdence and the 
human’s CL are numerical probabilities. However, previous works 
suggest that people, especially those who are not good at apply-
ing mathematical thinking, lack the ability to act on numbers (e.g., 
confdence, accuracy) [9, 13, 54, 92] and easily interpret what a prob-
ability value actually means [21, 79, 85]. This is possibly one reason 
why displaying AI’s confdence score to humans is insufcient for 
calibrating their trust, which is revealed by both our work and 
existing studies [82, 106]. Thus, it can be challenging to rely solely 
on people to make rational reliance choices. Our work proposes 
leaving the computation task (i.e., CL estimation/comparison) to 
the machine and calibrating human trust by automatically adapting 
the decision-making interface. This can counter possible human 
cognitive biases [8, 97] and avoid making people directly deal with 
probabilities. Future work could explore two other directions. One 
is to design more efective algorithm-in-the-loop task coordination 
methods (e.g., learning to defer [66]) while retaining a proper level 
of human autonomy. The other is to design interfaces to improve 
people’s comprehension of probabilities, such as adding a simple tu-
torial about probability and frequency [70], presenting probabilities 
in more understandable manners [54], etc. 

6.2 Achievement of Complementary 
Performance beyond Trust Calibration 

Exploiting knowledge/capability complementarity is ben-
efcial for team performance. Our study found that although 
the team performance in the proposed three conditions exceeded 
AI Only and Human Only, the improvement was not “remarkable” 
(about 3-4%). One of the key reasons is that the complementary 
region/zone between humans’ knowledge space and that of AI’s 
is relatively small. It is refected by the performance analysis in 
Human Only that there are only a few instances that only one mem-
ber of the human-AI team can handle correctly, making it hard to 
achieve substantial complementary performance just by calibrat-
ing human trust. In comparison, in Bansal et al.’s work [6] where 
complementary performance is achieved, humans’ independent 
accuracy is even higher when AI cannot give a correct recommen-
dation than when AI can. Therefore, echoing [6, 106], to ensure 
complementary performance, besides calibrating people’s trust in 
AI, it is necessary to harness the complementarity of human and AI 
intelligence [5, 103], perhaps by training an AI that can complement 
humans’ knowledge and error regions [3]. 

The modeling of human capability can empower more 
elaborate designs. In addition to approximating people’s CL, our 
proposed modeling method is able to estimate people’s predictions. 
We think this information can be valuable because it can help us 
project in advance whether humans will make consistent judgments 
with AI. We can combine this information with human-AI CL to 
enable more sophisticated strategies for assisting humans in mak-
ing better decisions. For example, when the judgments of humans 
and AI are predicted to be consistent, and neither of their CLs is 
high, both of them are likely to make a wrong prediction. In such 

a case, AI can focus on encouraging people to think analytically 
rather than afrming people’s decisions. For example, as suggested 
in [6], AI sometimes can play the role of devil’s advocate and ques-
tion humans’ judgment. Future work could explore more advanced 
approaches to leveraging humans’ decision-making models and 
human-AI capabilities proposed in this paper. 

6.3 Design of Appropriate CL Communication 
Methods 

Appropriately communicating the CL information is as im-
portant as correctly modeling it. As humans are the ultimate 
decision-makers, how they receive, perceive, and use this informa-
tion in their decision process is essential to the outcome. Although 
the three CL exploitation mechanisms proposed in this paper im-
proved people’s appropriate trust in AI, we found that there were 
still some participants who held onto their misjudgments. Partici-
pants’ open-ended feedback suggests that some participants did not 
think that their ability could be easily and reliably estimated by the 
system, which hindered the potential of our method. Although we 
had told them the necessary information, the underlying process 
was still a kind of black box to some participants. Thus, we suggest 
providing a more detailed and easy-to-understand guide to intro-
duce and explain the rationale behind the CL modeling approach 
to humans, increasing their understanding and acceptance. 

Other potential efective CL communication designs. Be-
sides the proposed adaptive design, other types of information 
may also be adapted to facilitate the calibration of human trust. 
Previous works show that the availability of AI’s explanations, re-
gardless of their correctness, is likely to increase people’s trust in 
AI [6, 54, 81, 100]. Hence, we may design an Adaptive Explanation 
strategy to provide AI’s explanation only when AI’s CL is higher 
than humans’. In addition, some studies found that the framing 
of confdence may afect people’s perception of risk [20]. We thus 
can apply a positive tone to describe the AI’s CL when it is high, 
e.g., “AI has a 75% chance to make a correct prediction”, and use 
an uncertain tone otherwise, e.g., “AI has a 25% chance to make 
a wrong prediction” (although equivalent to the former). Besides, 
recent work highlights the dual process of cognition when people 
process information in decision-making [13, 17, 47, 101]. One gen-
eral way to leverage this theory is when people need to rely more 
on their own judgment such as when their CL exceeds the AI’s, the 
interface should stimulate people’s System 2 thinking (deliberative 
and analytical thinking). Through these theoretical lenses, we can 
design more efective usage of CL information. 

6.4 Pitfalls of Current CL Modeling and 
Exploitation Methods 

Potential side efects of the interface. Despite the efectiveness 
of our proposed designs in promoting humans’ appropriate trust, 
we still suggest designers be cautious of their potential pitfalls. 
For example, in Adaptive Recommendation, we found that the par-
ticipants seemed to form a pattern of skepticism of AI because 
they often could not see AI suggestions, which might hinder their 
utilization of AI’s assistance when AI’s correct advice is shown. 
In addition, Adaptive Workfow may lead to humans’ confrmation 
bias [74]. For example, after people made an initial judgment and 
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then found AI’s “confrmation”, they would be very sure that this 
was the correct answer. But in fact, sometimes people and AI make 
wrong judgments simultaneously. Therefore, we recommend that, 
in addition to grounding a design in existing cognitive theories, it 
is necessary to verify the potential impact and adverse efects of 
the design empirically. 

The drawback of human-AI CL and its ethical and account-
ability issues. There are two issues surrounding human-AI CL. 
First, since CL is just a probability of being correct, even if the 
human-AI CL is accurately modeled, inconsistent cases still exist: 
in a human-AI team, for a specifc task instance, the member with 
higher CL makes a wrong prediction while the member with lower 
CL makes a correct prediction. Such inconsistency may lead to hu-
mans’ inappropriate trust in AI. Second, our estimation of human 
CL can be imperfect, and an AI model’s confdence can sometimes 
be poorly-calibrated. So, using human-AI CL inappropriately may 
induce severe consequences and even become dangerous in high-
risk scenarios. For example, if we mistakenly estimate a human’s 
CL to be lower, our method may lead the human to accept the 
wrong advice from AI when she/he could have made a correct deci-
sion independently. Therefore, for human-AI CL to play a positive 
role, it is essential to confrm the reliability of human-AI correct-
ness likelihood before deployment. Besides, it may be benefcial to 
communicate the uncertainty behind the CL wherever appropriate 
to warn human decision-makers of the risk of such information. 
Another possible way to mitigate the negative impact is to avoid 
conveying a sense of confrmed, precise information, such as using 
specifc percentages or judgmental words [84]. Instead, researchers 
could communicate the CL information implicitly, embedding it in 
the decision-making process through designs similar to our pro-
posed adaptive methods. 

6.5 On the Generalizability of Our Method and 
Results 

Proper caution should be used when generalizing our method and 
results to diferent task domains and subject populations. First, we 
choose a rule-based approach to help users understand and modify 
the auto-generated decision model. However, this approach may 
not be suitable for more complex decision tasks such as those involv-
ing text or image data. Thus, we need to design proper knowledge 
representation and modeling algorithms based on the specifc char-
acteristics of the task and data. For example, in a textual sentiment 
analysis task, users can specify keywords or example sentences to 
represent their decision model [52]. Second, our study was con-
ducted on non-expert users in low-stake decision-making tasks. 
While it is a suitable testbed for exploring humans’ trust appro-
priateness in AI-assisted decision-making [39, 106], we caution 
readers to generalize our results to other populations or other tasks. 
For example, it is unclear whether our results will still hold when 
our designed interfaces are adopted in high-stake tasks (where the 
decision-maker might have diferent cognitive routes [94]). And 
whether domain experts’ capabilities can be well modeled by our 
method is also unknown. Nevertheless, we believe our proposed 
framework to calibrate humans’ trust based on both sides’ capabil-
ities can be generalized to diferent AI-assisted decision-making 
scenarios where collaboration is needed. Future work can adapt our 

human CL modeling and communication method to other decision-
making tasks with diferent stakeholders [60]. 

6.6 Limitations and Future Work 
There are several limitations in our proposed methods and experi-
mental setting. First, we used decision rules to approximate humans’ 
decision-making models. However, rules only provide a general 
model and cannot cover all edge cases. Future solutions can con-
sider integrating the “behavioral testing” method [7] where the 
system can use test cases to “check” users’ ability, just like testing 
a software or NLP model [88]. Second, we did not update humans’ 
decision-making models in the last 20 tasks because we focused on 
studying the impact of our method on humans in the scope of this 
paper. We assume that in the absence of correctness feedback (e.g., 
no access to ground truth), the user’s decision model is relatively 
fxed in the short term, which is reasonable for our experiments.
However, in real-world decision-making, users’ decision-making 
models can change as users interact with AI services and encounter 
more task instances [64], so a static model is not enough. In the 
future, we plan to explore how to maintain a real-time updated user 
decision model in long-term AI-assisted decision-making. Third, 
we measured human trust in AI by human-AI agreement. Although 
it is widely used [6, 100, 106], an obvious shortcoming is that, when 
people’s fnal judgment is consistent with the AI’s, we cannot dis-
tinguish whether it is because they listened to the AI’s advice or 
because their own decisions are consistent with the AI’s. Future 
studies may explore more suitable measurements. 

 

7 CONCLUSION 
Humans’ appropriate trust in AI is a fundamental challenge in 
AI-assisted decision-making, and our work makes a contribution to-
ward calibrating humans’ trust based on the capabilities of both hu-
mans and AI. Our investigation consists of two consecutive phases. 
In the frst phase, we explore how to model humans’ capability 
(correctness likelihood) on a given task instance. We propose a 
human decision-making model approximation method with an in-
teractive decision rule modifcation interface. In the second phase, 
we explore how to leverage human-AI capabilities to promote ap-
propriate trust in AI-assisted decision-making. Based on theories 
of people’s cognitive processes, we propose three CL exploitation 
methods and investigate their efects on humans’ trust appropriate-
ness, task performance, and user experience. Our results highlight 
the efectiveness of the proposed human CL modeling and exploita-
tion method in promoting more appropriate human trust in AI 
compared with the traditional AI confdence-based method. With 
the derived practical implications based on our main fndings, we 
hope this work to be an exploratory step towards promoting hu-
mans’ appropriate trust in human-AI teaming by considering the 
capability information of both sides. 
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