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ABSTRACT
In AI-assisted decision-making, it is crucial but challenging for hu-
mans to achieve appropriate reliance on AI. This paper approaches
this problem from a human-centered perspective, “human self-
confidence calibration”. We begin by proposing an analytical frame-
work to highlight the importance of calibrated human self-confidence.
In our first study, we explore the relationship between human self-
confidence appropriateness and reliance appropriateness. Then in
our second study, We propose three calibration mechanisms and
compare their effects on humans’ self-confidence and user expe-
rience. Subsequently, our third study investigates the effects of
self-confidence calibration on AI-assisted decision-making. Results
show that calibrating human self-confidence enhances human-AI
team performance and encourages more rational reliance on AI
(in some aspects) compared to uncalibrated baselines. Finally, we
discuss our main findings and provide implications for designing
future AI-assisted decision-making interfaces.
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1 INTRODUCTION
AI technology is increasingly crucial in supporting human decision-
making across various domains [2, 7, 47, 83, 89, 91, 92]. In AI-
assisted decision-making, AI provides recommendations while leav-
ing the final decision to humans [89]. Given the inherent uncertain-
ties of both humans and AI, one key challenge is ensuring humans’
appropriate reliance on AI [2, 89]. Showing AI confidence levels has
been proposed to address this, as accurate confidence scores can
indicate the likelihood of correct predictions [2, 38, 47, 66, 89, 90].
Nonetheless, studies on AI confidence presentation show mixed
outcomes, suggesting it doesn’t always improve human-AI collabo-
ration outcomes [47, 89, 90].

A key reason for the limited effectiveness of showing AI confi-
dence is that people’s reliance is not solely based on AI confidence
but also their self-confidence [10, 80]. For instance, overconfident
individuals may dismiss correct AI recommendations, while under-
confident ones may overly rely on erroneous AI advice. Existing re-
search often overlooks the role of human self-confidence in this pro-
cess, assuming that individuals possess an appropriate perception
of their confidence and can make rational decisions after evaluating
AI’s confidence. However, extensive evidence from decision-making
and cognitive science literature shows that people frequently ex-
hibit poorly calibrated self-confidence [51, 52, 54, 77, 84].

In this work, we address this crucial issue and propose an inno-
vative approach to improve the collaboration between humans and
probabilistic AI models through human self-confidence calibration.
We first introduce an analytical framework to uncover inappropriate
human reliance from a confidence-correctness matching perspec-
tive, recognizing that inappropriate self-confidence may hinder
rational human reliance on AI. Then, through three consecutive
studies, we aim to explore three critical research questions:

• RQ1: How may humans’ inappropriate self-confidence affect the
appropriateness of their reliance on AI’s suggestions?

• RQ2: How can humans’ self-confidence be calibrated and how
will different self-confidence calibration mechanisms affect hu-
mans’ perceptions and user experience?

• RQ3: How will calibration of humans’ self-confidence affect the
appropriateness of their reliance on AI’s suggestions and task
performance?
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To answer RQ1, we conduct our first study using income pre-
diction as the task [21, 28, 68, 89]. Following the Judge Advisor
System (JAS) model[74], we performed a three-step process: indi-
viduals initially made a judgment and assessed their self-confidence,
then received AI recommendations (with or without a confidence
score), and ultimately made their final judgment. Our findings un-
cover a significant link between the appropriateness of human
self-confidence and the appropriateness of human reliance on AI.
Through our analytical framework, we discovered that discrep-
ancies between human confidence and correctness significantly
increase error rates. These insights underpin our core goal: cali-
brating individuals’ self-confidence to optimize the appropriateness
of their reliance on AI.

In response to RQ2, built on decision-making and cognitive sci-
ence theories related to human self-confidence calibration, we in-
troduce three calibration mechanisms: Think the Opposite (Think),
Thinking in Bets (Bet), and Calibration Status Feedback (Feedback).
Then, in our second study, we deliberately removed AI involvement
to mitigate potential confounding factors stemming from AI model
suggestions. Participants independently made a set of predictions,
and we compared the three proposed self-confidence calibration
mechanisms against a control condition (without any calibration).
Besides objective metrics, we also collected participants’ percep-
tions and user experience. The results demonstrate that, compared
to the control condition, Think and Feedback effectively align partic-
ipants’ self-confidence levels with their actual accuracy. However,
Think yields participants’ higher perceived complexity and mental
demand, as well as lower user preference and satisfaction. These
findings imply that balancing these trade-offs will be a pivotal
consideration for future research.

Finally, to answer RQ3, our third study explored the impact
of self-confidence calibration on AI-assisted decision-making. We
compared the results of confidence calibration with a baseline with-
out calibration. The findings indicate that confidence calibration
leads to people’s more rational reliance behaviors, reduces their
under-reliance (though over-reliance is not reduced), and improves
task performance. In addition, based on our analytical framework,
we also analyzed the proportion of different human-AI confidence-
correctness matching situations and the corresponding error rates
in a fine-grained manner.

In this paper, we make the following contributions:

• We proposed an analytical framework that unpacks humans’
(in)appropriate reliance from a novel perspective, i.e., human
self-confidence appropriateness. This framework provides fresh
insights for understanding reliance appropriateness.

• We designed an exploratory study to understand the relationship
between the appropriateness of human self-confidence and the
appropriateness of human reliance on AI.

• We designed three mechanisms for calibrating self-confidence
and evaluated their efficacy and impact on user experience while
analyzing their advantages and limitations.

• We further investigated the influence of self-confidence calibra-
tion on human reliance on AI suggestions and decision-making
performance. We furnished substantial evidence and a deep un-
derstanding of the pivotal role of self-confidence calibration in
human-AI collaborative decision-making.

In summary, this paper offers a distinctive perspective on under-
standing and prompting the appropriateness of human reliance in
AI-assisted decision-making. We aspire that our investigation will
contribute to enriching the community’s comprehension of the role
of human self-confidence in human-AI collaboration and serve as a
cornerstone for continued research of self-confidence calibration
methodologies within the realm of AI-assisted decision-making.

2 RELATEDWORK
2.1 Appropriate Reliance in AI-Assisted

Decision-Making and Its Measurements
Extensive research has examined the appropriateness of human
reliance on AI systems (including broadly automated systems and
robotics) [7, 42, 48, 50, 82, 85]. In recent HCI studies, the focus has
shifted frommerely increasing trust in AI to facilitating appropriate
trust and reliance [6, 8, 47, 70, 78, 79, 85, 87, 89]. Two widely rec-
ognized phenomena, automation bias [60] and algorithm aversion
[16], highlight the challenge individuals face in aligning their trust
and reliance with AI system capabilities.

In AI-assisted decision-making research, the focus has turned to-
wardmanaging trust and reliance on a case-by-case basis [39, 79, 85].
Key concepts in this context are trust and reliance [39, 79, 85]. Trust
reflects subjective perceptions of AI, often assessed using self-report
scales, while reliance pertains to objective behavior in response to
AI systems [2, 47, 83, 89, 90]. Intriguingly, studies have revealed
inconsistencies between trust and reliance. Increased self-reported
trust doesn’t necessarily correlate with improved reliance behav-
iors [67]. In this paper, our focus is on studying human reliance
behaviors, which often provide a more reliable indicator of appro-
priateness when relying on AI compared to self-reported trust.

Appropriate reliance involves accepting AI suggestions when
they are correct and rejecting them when they are wrong. Existing
studies employ diverse definitions and measurement methods for
appropriate reliance, falling into two broad categories:

Behavior-Based Measurement: This approach assesses ap-
propriate reliance by analyzing human behaviors, considering AI
confidence as an indicator of trustworthiness [89, 90]. If humans
rely more on AI’s suggestions when the AI expresses high confi-
dence (and rely on AI less when AI confidence is low), it’s deemed
calibrated and appropriate. However, the confidence of AI may not
directly represent the correctness of AI. Therefore, many works
that rely on this measure of the appropriateness of human reliance
have found that although people’s trust/reliance gets calibrated,
the final task performance does not improve [89, 90].

Outcome-Based Measurement: This approach directly as-
sesses appropriate reliance based on the correctness of AI recom-
mendations and human decisions [2, 29, 47, 70, 83]. It categorizes
inappropriate reliance into over-reliance and under-reliance, quan-
tifying the appropriateness of human reliance on AI suggestions.
Over-reliance occurs when people align with AI predictions when
the AI is incorrect, while under-reliance is when people reject AI
predictions when the AI is correct. Some work has adopted more
stringent criteria, focusing solely on whether people can make
the correct final decisions when their initial predictions and AI
suggestions differ [29, 70]. In this paper, we use outcome-based
measurement to assess humans’ reliance appropriateness.
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2.2 Enhancing Appropriate Reliance in
AI-Assisted Decision-Making

The field of AI-assisted decision-making is gaining significant atten-
tion within HCI communities [6, 47, 49, 70, 72, 78, 79, 85, 87, 89, 93].
In this human-AI collaborative setting, AI acts as an advisor, offer-
ing suggestions often accompanied by uncertainty. A paramount
challenge in these scenarios is ensuring that humans rely on AI ad-
vice in an appropriate manner [39, 89]. To tackle this issue, existing
studies have ventured into three primary strategies.

One approach centers on enhancing individuals’ comprehension
of AI prediction uncertainty [85, 89]. AI prediction uncertainty is
typically measured via the AI model’s calibrated confidence level
that can reflect prediction correctness probabilities [25, 67]. For
example, a confidence score of 0.6 signifies a 60% chance of a cor-
rect prediction. Some studies directly display calibrated confidence
scores to users [2, 89], which explored the impact of showing AI
confidence on trust calibration and task performance. Others inte-
grate AI confidence into interface design. For instance, Rastogi et al.
[66] adjusted decision-making timeframes based on AI confidence
levels to promote humans’ more analytical thinking when AI’s con-
fidence is low. Besides, various confidence representation methods,
including violin plots or question marks, have also been explored
[90]. However, these approaches haven’t consistently resulted in
improved reliance appropriateness or task performance [47, 89, 90]
- “only displaying AI confidence can be insufficient”.

The second approach focuses on enhancing individuals’ under-
standing of AI error patterns, aiding in the development of humans’
accurate mental models for AI capabilities [1, 8, 30]. For instance,
Bansal et al. [1] introduced the concept of “mental models of AI
error boundaries”, highlighting factors shaping these models. This
enables individuals to discern when to accept or reject AI recom-
mendations. Cabrera et al. [8] proposed to display “behavior de-
scriptions” of AI models to end-users, providing insights into AI
performance on specific instances. This approach enhances human-
AI collaboration by helping users recognize AI failures and fostering
more reliance on AI when it demonstrates higher accuracy.

The third approach aims to elucidate the rationale behind AI
predictions through AI explanations [2, 29, 40, 41, 64, 78, 81]. These
explanations take various forms, such as feature importance, feature
contribution, similar examples, counterfactual examples, and natu-
ral language-based explanations [39, 44]. However, recent research
has unveiled a potential drawback of providing AI explanations: the
risk of increased over-reliance on AI systems when AI provides in-
correct suggestions [2, 64, 83, 89]. This phenomenon is attributed to
a lack of cognitive engagement with AI explanations, as individuals
may opt for quick heuristic judgments, associating explainability
with trustworthiness when they lack the motivation or ability for
in-depth analysis [3, 6].

Our approach, distinct from prior methods, focuses on enhancing
the appropriateness of humans’ reliance by calibrating their self-
confidence. One similar work to ours is He et al.’s study [29], which
addresses individuals’ overestimation of their abilities (known as
the Dunning-Kruger effect) by calibrating self-assessment through
a tutorial. However, their approach primarily targets task-level
self-assessment, whereas rational reliance requires case-by-case

judgments on whether to adopt AI recommendations [89]. More-
over, they didn’t explore the setting where AI shows confidence,
whereas our work studies the effects of calibrating human self-
confidence when AI’s confidence is also presented. Another related
work by Ma et al. [47] models the correctness likelihood (CL) of
humans and AI, comparing them within each task case to adap-
tively adjust the decision-making interface. However, their primary
emphasis was on enhancing AI’s understanding of humans, rather
than individuals gaining self-calibration. Additionally, they found
some users doubted the system-estimated human CL which hin-
dered the effectiveness of their approach. Besides, they nudged user
choices through the interface design, potentially compromising
user autonomy and raising ethical concerns. In contrast, our work
focuses on calibrating individual self-confidence, not only ensuring
user autonomy but also avoiding ethical issues around AI nudges.

2.3 Human Self-confidence in Decision Making
and the Calibration

Confidence, grounded in subjective perceptions, shapes our belief
in the validity of our thoughts and abilities [24, 46]. It plays a piv-
otal role in decision-making and receptiveness to advice [4], even
affecting our willingness to heed AI recommendations [10, 45, 80].
Humans’ self-confidence often correlates with credibility in var-
ious contexts, from children’s perceptions of adults [76] to juror
evaluations of expert witnesses [12]. However, self-confidence can
sometimes stray from reality, leading to overconfidence or under-
confidence, affecting experts and laypersons alike [51, 52, 54, 77, 84].
Overconfidence, characterized by inflated self-estimation, can re-
sult in risky choices [55]. Conversely, underconfidence, marked
by self-underestimation, can lead to missed opportunities [18, 36].
Extensive empirical studies in decision-making have observed the
misalignment between human self-confidence and actual accuracy,
evident in clinical diagnosis and financial decisions [23, 52]. For
example, Miller et al. [52] found no consistent correlation between
clinicians’ confidence and decision accuracy, while Grežo et al.
[23] revealed overconfidence’s significant impact on financial de-
cisions. These findings highlight the importance of accurate self-
assessment.

The literature on self-confidence calibration delves into cogni-
tive processes and mechanisms. This research uncovers cognitive
biases and heuristics contributing to mis-calibration, such as the
impact of overconfidence [55] and the Dunning-Kruger effect [36].
It also explores metacognitive processes, offering manipulations to
enhance calibration [35, 63]. To foster calibrated self-confidence,
cognitive approaches have emerged. Pulford et al. [65] examine
external feedback and response time’s impact on calibration. Moore,
in his book “Perfectly Confident” [54], navigates human confidence
complexities, highlighting factors influencing accurate judgments
and offering practical strategies, including seeking feedback, di-
verse perspectives, and a growth mindset. Duke [17] advocates
embracing uncertainty and viewing decisions as bets, offering a
strategy to assess risks, uncertainties, and potential outcomes.

Our paper adapted human self-confidence calibration to AI-
assisted decision-making scenarios, examining how it influences
humans’ reliance on AI suggestions amid uncertainty.
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3 UNPACKING INAPPROPRIATE RELIANCE
FROM A HUMAN SELF-CONFIDENCE
PERSPECTIVE

3.1 Appropriateness of Human Self-Confidence
The appropriateness of human self-confidence depends on how
well it aligns with actual competence or performance [55, 56]. Over-
confidence happens when confidence exceeds abilities, while under-
confidence occurs when confidence falls short. In decision-making
research, evaluating self-confidence appropriateness involves gath-
ering humans’ predictions and corresponding self-reported confi-
dence levels [51, 54, 77, 84]. Next, we introduce the measurements
of confidence appropriateness at both task and instance levels.

3.1.1 Existing Measurements of Confidence Appropriateness at A
Task Level. Manymeasurements have been proposed to evaluate the
appropriateness of confidence at a task level, such as Over/Under
Confidence Index [51, 84], Brier score [69], Pearson correlation
coefficient [15, 52, 67], etc. One of the most widely used measure-
ments is Reliability diagrams [14, 27, 58] (Figure 1), assessing the
alignment between stated confidence and actual accuracy.

For a task, reliability diagrams first partition all 𝑁 predictions
into 𝑀 bins based on the corresponding confidence values, then
calculate the accuracy 𝑎𝑐𝑐 (𝐵𝑚), and average confidence 𝑐𝑜𝑛𝑓 (𝐵𝑚),
for each bin 𝐵𝑚 . Finally, the diagrams can be drawn by setting
confidence as the horizontal axis and actual accuracy as the vertical
axis. With the diagrams, a metric called Expected Calibration Error
(ECE) [51, 84] is used to quantify the difference between expected
accuracy and self-reported confidence over the partitioned bins.

ECE =

𝑀∑︁
𝑚=1

|𝐵𝑚 |
𝑁

|𝑎𝑐𝑐 (𝐵𝑚 ) − 𝑐𝑜𝑛𝑓 (𝐵𝑚 ) |, (1)

ECE first computes the absolute difference between the accuracy
𝑎𝑐𝑐 (𝐵𝑚) and average confidence 𝑐𝑜𝑛𝑓 (𝐵𝑚) within each bin 𝐵𝑚 ,
then calculates the average of all bins, weighted by the number
of predictions of each bin |𝐵𝑚 | over the total prediction number
𝑁 . In our user studies, we will use ECE to measure the overall ap-
propriateness of human self-confidence. Since appropriate reliance
requires humans to distinguish whether to rely on an AI’s sugges-
tion on a case-by-case basis [70, 89], to understand the effects of
self-confidence appropriateness on reliance appropriateness, we
should also measure it at an instance level. Thus, next, we propose
an instance-level measurement of self-confidence appropriateness.

Table 1: Instance-Level Confidence-Correctness Matching.
There are four types of confidence & correctness situations
related to a specific prediction in decision-making tasks.
Whether a C-C is matched does not depend on whether
the prediction is correct, but on whether the correctness is
aligned with confidence.

Confidence Correctness C-C Matching
High Correct C-C Matched
High Incorrect Over-confident (C-C Mismatched)
Low Correct Under-confident (C-C Mismatched)
Low Incorrect C-C Matched
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Figure 1: Reliability diagrams for a binary classification task
[25], illustrating calibrated confidence (left, the actual accu-
racy aligns with the stated confidence), over-confidence (mid-
dle, the actual accuracy falls below the stated confidence),
and under-confidence (right, the actual accuracy is above the
stated confidence).

3.1.2 Measuring Confidence Appropriateness at An Instance Level.
Based on the confidence level and the correctness of a specific pre-
diction, we propose ameasurement calledConfidence-Correctness
Matching (C-C Matching in short, shown in Table 1). To simplify
the problem, in this paper, we consider confidence at a binary level:
low or high1. For a classification task, any prediction can be cate-
gorized into four types based on its confidence (low or high) and
correctness (correct or incorrect). We define [High confidence &
Incorrect prediction] as Over-confident and [Low confidence & Cor-
rect prediction] as Under-confident in a specific prediction. And we
classify these two as Confidence-Correctness Mismatched (C-C
Mismatched in short). On the contrary, we define [High confidence
& Correct prediction] and [Low confidence & Incorrect prediction]
as Confidence-Correctness Matched (C-C Matched in short).
Based on C-C Matching, we propose an analytical framework to
analyze the appropriateness of humans’ reliance on AI.

3.2 An Analytical Framework Integrating
Human and AI Confidence Appropriateness

Existing studies on improving reliance appropriateness in human-
AI decision-making often focus on the AI confidence perspective
(e.g., providing different forms of AI confidence) [66, 89, 90]. How-
ever, they overlook the significance of assessing the appropriateness
of human self-confidence [2, 83]. Within the context of human-AI
collaborative decision-making, the interplay between individuals’
confidence in their own judgments and the confidence expressed
by AI systems plays a pivotal role in shaping human reliance on AI
recommendations [10, 80]. Therefore, to comprehensively investi-
gate and analyze the intricate relationship among these factors, we
propose an integrated analytical framework. This framework takes
the Confidence-Correctness Matching (see Sec 3.1.2) of both
humans and AI into consideration to analyze the specific causes of
inappropriate reliance.

We adopt the Judge-Advisor System (JAS) in decision-making to
build our analytical framework (Figure 2). In JAS, there will be three
types of predictions: (1) human initial prediction, (2) AI suggestion,

1Note that the threshold of confidence levels (high or low) depends on some factors
such as task characteristics [2, 45, 66, 67]. For instance, for binary classification tasks, AI
confidence values fall within the range of 0.5 to 1.0, while for multi-classification tasks,
this range may extend from 0 to 1.0. Some previous studies have employed thresholds
(e.g., mean or median) to define what constitutes "high" confidence [2, 45, 66, 67]
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Figure 2: A space of different combinations of 1) initial human prediction correctness and confidence, 2) AI suggestion
correctness and its confidence, and 3) human final decision correctness, at a task instance level. To save space, we only highlight
situations where a human’s initial prediction differs from the AI’s suggestion and the human’s final decision is incorrect.
Comparing (a) and (b), (a) may induce more incorrect AI reliance due to Human C-C Mismatched (Low&Correct). Similarly, (c)
may lead to more incorrect self-reliance due to Human C-C Mismatched (High&Incorrect).

and (3) human final decision. Figure 2 illustrates all combinations of
human and AI C-C Matching situations. For clarity, here, we focus
on cases where humans initially disagree with AI (because humans
tend to keep their initial predictions when they are the same as the
AI’s recommendations, feeling confirmed in their choices [2, 70]).
Next, we analyze the potential causes of inappropriate reliance
based on humans and AI’s C-C Matching.

From Human C-C Matching Perspective. Within Figure 2,
we distinguish two types of incorrect reliance: incorrect AI reliance
(Figure 2 (a) and (b)) and incorrect self-reliance (Figure 2 (c) and
(d), which is also another perspective of incorrect AI reliance).
However, we speculate that the causes of incorrect AI reliance
in Figure 2 (a) may be different from Figure 2 (b). Similarly, the
causes of incorrect self-reliance in Figure 2 (c) can be different
from Figure 2 (d). Specifically, for humans’ incorrect AI reliance in
Figure 2 (a) and (b): although in both cases, the human first makes
a correct initial prediction and then sees a wrong AI suggestion,
the Human C-C Matching is different. In (a), people’s confidence in
their initial judgment is low (low & correct, C-C Mismatched), but
in (b), people are very confident in their initial judgment (high &
correct, C-C Matched). We conjecture that humans in (a) are more
prone to adopt the AI’s erroneous suggestions due to their low
self-confidence. Similar analysis can be used for humans’ incorrect
self-reliance in Figure 2 (c) and (d). We speculate that humans in
case (c) are more prone to ignore the AI’s correct suggestions due
to their mistakenly high confidence levels.

From AI C-C Matching Perspective. If AI is C-C Mismatched,
it can pose challenges for a human to appropriately rely on AI’s
suggestions. For instance, Figure 2 (1)-(4) are all situations where
humans with a correct initial prediction encounter an incorrect
AI suggestion. However, the AI C-C Matching varies. In situations

(2) and (4), the AI provides an incorrect suggestion but with high
confidence (AI C-C Mismatched). Compared to situations (1) and
(3), in situations (2) and (4), humans could easily be misled by the
AI’s high confidence, resulting in incorrect AI reliance. Similarly,
Figure 2 (5)-(8) are all situations where humans with an incorrect
initial prediction encounter a correct AI suggestion. However, in
situations (5) and (7), the AI provides a correct suggestion but with
low confidence (AI C-C Mismatched). Compared to situations (6)
and (8), humans in situations (5) and (7) could be more likely to
ignore AI’s correct suggestions due to AI’s low confidence, leading
to incorrect self-reliance.

Overall, we argue that Human and AI Confidence-Correctness
Matching jointly influences the appropriateness of human reliance.
If both humans and AI are C-C Mismatched (Figure 2 (2) and (5)), it
can be extremely challenging for humans to achieve appropriate re-
liance. Conversely, if both humans and AI are C-C Matched (Figure
2 (3) and (8)), humans would be more likely to have correct reliance.
While the AI community has explored calibrating AI confidence
to enhance AI C-C Matching [25], scant focus in the HCI commu-
nity has been given to human confidence calibration and little is
known about its impact on reliance appropriateness. To fill this
research gap, this paper introduces a self-confidence calibration
method designed to improve Human C-C Matching. Through this
calibration approach, we aim to reduce the occurrence of Human
C-C Mismatch, ultimately mitigating incorrect reliance stemming
from such discrepancies.

3.2.1 How can we use the proposed analytical framework? Help-
ing with Posthoc Analysis of Inappropriate Reliance. One
crucial application of this framework is its use in dissecting the
causes behind people’s inappropriate reliance, from a Confidence-
Correctness Matching perspective. Specifically, we can categorize
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users’ decision-making data into different human-AI C-C Matching
situations. By checking the occurrence ratio of each situation, we
can know whether humans or AI have confidence-related problems.

Informing AI System Design. The detailed understanding
of the causes of users’ inappropriate reliance can further enable
designers to make targeted enhancements to AI system design.
For instance, if inappropriate reliance predominantly stems from
frequent AI C-C Mismatch, designers can involve mechanisms to
refine the calibration of the AI model’s confidence. Conversely, if
the root cause lies in recurring Human C-C Mismatch, designers
can add interventions to calibrate users’ self-confidence to improve
their rationality in the decision-making process.

4 STUDY 1 - UNDERSTANDING THE
RELATIONSHIP BETWEEN HUMAN
SELF-CONFIDENCE APPROPRIATENESS
AND RELIANCE APPROPRIATENESS

Our first study aims to understand the relationship between the ap-
propriateness of human self-confidence and the appropriateness of
human reliance. In this study, we did not perform any intervention
on the participants’ self-confidence to capture their most natural
behaviors when making decisions with AI’s assistance.

4.1 Research Questions
Focusing on our main research question RQ1: Howmay humans’
inappropriate self-confidence affect their reliance appropri-
ateness on AI’s suggestions?, we specifically ask the following
sub-questions.

As mentioned in our analytical framework (Sec 3.2), inappropri-
ate human self-confidence (C-C Mismatched) might affect reliance
appropriateness. Therefore, we first ask,
- RQ 1.1: How will different situations of human C-C Matching
affect humans’ performance?

- RQ 1.2: How will the appropriateness of human self-confidence
correlate with the appropriateness of human reliance?
In addition, before calibrating humans’ self-confidence, we want

to first explore whether there will be any difference when AI’s
confidence is shown or not.
- RQ 1.3: How will the presence of AI confidence affect the appro-
priateness of human self-confidence?

- RQ 1.4: How will the presence of AI confidence affect the appro-
priateness of human reliance and task performance?

4.2 Task and AI Model
4.2.1 Task. We selected income prediction as our testbed, which
is widely used in existing AI-assisted decision-making studies [21,
28, 47, 68, 89]. Participants were tasked with predicting whether an
individual’s annual income exceeded $50K based on her/his profile.
Data for this task came from the Adult Income dataset [34] in the
UCI Machine Learning Repository, comprising 48,842 instances
with 14 attributes. The ground truth was binary (greater/less than
50K). We chose income prediction as our task for three reasons.
First, it does not require specific domain knowledge or training
which is suitable for non-expert participants [21]. Second, the task
is relatively low-risk so factors such as personal risk tolerance and

responsibility concerns have less influence on people’s reliance on
AI, allowing us to focus on studying the effects of human-AI confi-
dence. Third, prior research suggests that in the income prediction
task, lay people’s confidence can sometimes be poorly calibrated
[47]. This makes it an ideal testbed for us to investigate the effects
of confidence calibration. We followed the approach of [21, 89],
selecting eight important attributes to present to participants, in-
cludingAge, Year of education,Work class,Occupation,Marital status,
Gender, Race, andWork hours per week.

4.2.2 AI Model. We utilized a logistic regression (LR) model with
default sklearn2 settings for our income prediction task, in line with
[21]. The LR model optimizes the Log loss and provides a well-
calibrated confidence score [25, 62], which can avoid confounding
factors caused by AI’s miscalibrated confidence and help us focus
on human confidence calibration. After data pre-processing, we
trained our model using a 70% random split of the dataset, while
participants received prediction trials from the remaining 30%.

4.2.3 Task Sample Selection. To ensure a reasonable study duration,
we selected 20 task instances for the main task and incorporated
additional instances for the tutorial. Our selection criteria priori-
tized maintaining both fidelity in data distribution [83] and well-
calibrated AI confidence scores [83, 89]. Within the 20 main task
instances, half featured AI confidence scores below 0.75, indicating
low AI confidence cases (with an average score of 0.6). Among these,
six were accurately predicted by AI, resulting in a 60% accuracy. The
remaining half showcased confidence scores above 0.75, signifying
high AI confidence cases (with an average score of 0.9), and nine
of these were correctly predicted by AI, yielding a 90% accuracy.
We set different AI accuracies for the low-confidence samples and
high-confidence samples separately because we need to ensure that
not only is the overall AI model calibrated, but the confidence of
the AI model on our selected task samples is also well-calibrated.

4.3 Conditions
To understand the relationship between the appropriateness of
human self-confidence and the appropriateness of their reliance on
AI, we use a natural AI-assisted decision-making process. Since we
also want to explore the effects of the presence of AI confidence,
we have two conditions:
• With AI Confidence: Participants receive AI’s predictions along
with AI’s confidence scores.

• Without AI Confidence: Participants receive only AI’s predic-
tions.

4.4 Procedure
After obtaining participant consent, we conducted a tutorial to
familiarize them with the task. We explained each attribute in the
profile table, provided income distribution graphs, and tested their
understanding with qualification questions. Participants proceeded
to two training examples with ground truth before the main task
with AI assistance. During the main task (20 cases), participants
went through three steps in each case (Figure 3). Step 1: Participants
made predictions and indicated their confidence on a slider (50%

2https://scikit-learn.org/
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Figure 3: The interface and procedure for making a prediction on a task instance.

to 100%). And we told participants “In a binary-choice task if you
believe your confidence was lower than 50%, you might want to flip
your prediction”. Step 2: They then received AI suggestions (with or
without AI confidence). Step 3: Theymade final decisions. Attention-
check questions were included during the main task to filter out
inattentive participants.

4.5 Participants
Before recruiting, we performed a power analysis to determine
the necessary sample size for our two-group study using G*Power
[19]. Based on a pilot study, we set the default effect size 𝑓 = 0.6
(indicating a moderate effect), a significance threshold 𝛼 = 0.05,
and a statistical power (1 − 𝛽) = 0.8, resulting in a sample size
of 90. Following IRB approval, participants were recruited from
Prolific3, meeting criteria such as U.S. residency for income pre-
diction tasks, over 99% approval rate, English fluency, at least 1000
prior approvals, and desktop computer use. Our study, employing
a between-subjects design without repeat participation, yielded 94
valid responses (With AI Confidence: 50, Without AI Confidence: 44)
after excluding inattentive participants. Demographics included 49
males, 45 females, and varied ages and AI expertise levels. Incen-
tives included a $1 bonus for over 90% accuracy. The study lasted
about 15 minutes, paying an average of $10.5 per hour.

4.6 Evaluation Measures and Analysis
4.6.1 Measurements. This study measures the appropriateness of
participants’ self-confidence, the appropriateness of their reliance,
and their task accuracy.

Appropriateness of human self-confidence.We measure the
Expected Calibration Error (ECE) of participants’ prediction, which
has been described in Eq. 1.

Appropriateness of human reliance.We employ two metrics:
(1) Over-Reliance and (2) Under-Reliance.

Over-Reliance =
Number of incorrect human final decisions with incorrect AI advice

Total number of incorrect AI advice
,

Under-Reliance =
Number of incorrect human final decisions with correct AI advice

Total number of correct AI advice
,

Based on our analytical framework (see Figure 2), for theWith AI
Confidence condition, we also categorize participants’ predictions
that initially disagree with AI into different human-AI C-C Match-
ing situations ((1) Human C-C Mismatched & AI C-C Matched,
(2) Human C-C Matched & AI C-C Mismatched, (3) Human C-C
Mismatched & AI C-C Mismatched, and (4) Human C-C Matched &
3www.prolific.co

AI C-C Matched). We then calculated the error rate of participants’
final predictions in different human-AI C-C Matching situations.

Error Rate by C-C Matching =
number of incorrect predictions in a specific situation

number of all predictions in a specific situation
,

4.6.2 Analysis Method. Since the data did not pass the normal-
ity test, we compared two unpaired groups (With AI Confidence
vs. Without AI Confidence) via Mann-Whitney U tests and com-
pared two paired groups (Human C-C Mismatched vs. Human C-C
Matched) via Wilcoxon Signed-Rank tests. And we use the Spear-
man correlation test to analyze the correlation between the appro-
priateness of human self-confidence and the appropriateness of
human reliance.

4.7 Results
4.7.1 Effects of Different Human Confidence-Correctness Matching
(RQ 1.1). Based on the proposed framework, we calculated the error
rates in different human-AI C-C matching situations. Additionally,
only considering human C-C matching (regardless of whether AI’s
confidence matched its correctness), we divided participants’ task
instances into two categories: (1) Human C-C Mismatched and (2)
Human C-C Matched. Figure 4 shows the results.

Considering human and AI C-C matching together (Figure 4 left),
Human C-C Mismatched & AI C-C Matched has a higher error rate
than Human C-C Matched & AI C-C Matched. This indicates that
when the AI’s confidence matches its correctness, a mismatch in
humans’ confidence and correctness will lead to increased incorrect
reliance. Additionally, results show that Human C-C Mismatched
& AI C-C Mismatched yields a higher error rate than Human C-
C Matched & AI C-C Matched. It reveals that if humans and AI
both mistakenly quantify their confidence, it is extremely hard
for humans to make a correct final decision. Only focusing on the
human C-C matching (Figure 4 right), we can see that Human C-C
Mismatched showcases a higher error rate thanHumanC-CMatched.
This indicates that no matter whether AI’s confidence matches its
correctness, if the human’s self-confidence is inappropriate (C-C
Mismatched), the human will have more incorrect reliance.

Overall, these results validate our analytical framework’s asser-
tion that mismatches between an individual’s self-confidence and
actual correctness lead to increased incorrect reliance. Hence, this
further supports our initial motivation - If we can calibrate people’s
self-confidence, we may be able to further reduce the occurrence of
incorrect reliance.



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Shuai Ma, et al.

0.2

0.4

0.6

0.8

1

Error Rate in Different Confidence-Correctness Matching Situations

*
*

*
*

***

Human C-C 
Mismatched & AI 

C-C Matched

Human C-C 
Matched & AI C-C 

Mismatched

Human C-C 
Mismatched & AI 
C-C Mismatched

Human C-C 
Matched & AI C-C 

Matched

Human C-C 
Mismatched

Human C-C 
Matched

Figure 4: An analysis of error rate in different human and AI Confidence-Correctness Matching situations. The left shows the
four categories considering both human and AI C-C Matching. The right shows the two categories only considering human C-C
Matching no matter whether AI is C-C Matched or not. Error bars indicate standard errors. (*: 𝑝 < 0.05; **: 𝑝 < 0.01; ***: 𝑝 < 0.001)

4.7.2 Correlation between Human Self-Confidence Appropriateness
and Human Reliance Appropriateness (RQ 1.2). We integrated With
AI Confidence andWithout AI Confidence data and conducted Spear-
man correlation analysis between ECE and Under-Reliance, and
between ECE and Over-reliance. The results indicate that ECE posi-
tively correlates with Under-reliance (𝜌 : 0.404, 𝑝<0.001) and Over-
reliance (𝜌 : 0.343, 𝑝<0.01). These findings highlight the potential
for calibrating human self-confidence (lowering ECE) to improve
the appropriateness of human reliance on AI.

4.7.3 The Effects of Showing AI Confidence (RQ 1.3, RQ 1.4). Our
results show that there is no significant difference between with
or without AI confidence in ECE. Moreover, there is no significant
difference in terms of accuracy. Participants in With AI Confidence
have a higher Under-Reliance and a lower Over-Reliance than in
Without AI Confidence. This might be because showing AI confi-
dence makes participants recognize the uncertainty behind AI’s
suggestions, leading to reduced reliance. In summary, showing AI
confidence cannot improve the appropriateness of humans’ self-
confidence, task performance, and reliance appropriateness (at least
in this paper’s setting). In our Study 3, we consistently displayed AI
confidence in the AI-assisted decision-making process, aiming to
understand how calibration of human self-confidence will affect the
decision-making outcomes when both human and AI’s confidence
are presented (so that humans can compare them).

4.7.4 Summary. In general, the results of Study 1 show that (RQ
1.1) Human C-C Mismatch will lead to more human incorrect re-
liance (higher error rate), so reducing the occurrence of Human
C-C Mismatch has the potential to reduce humans’ incorrect re-
liance. In addition, we also observed that (RQ 1.2) ECE has a strong
correlation with Over-Reliance and Under-Reliance, which means
that the reduction of ECE has the potential to reduce Over-Reliance
and Under-Reliance. Furthermore, our findings indicate that (RQ
1.3 and 1.4) displaying AI confidence did not result in a reduction
of ECE, nor did it directly enhance task performance or the appro-
priateness of human reliance on the AI system. Given the potential
benefits of enhancing the appropriateness of human self-confidence,
in the next study, we proceed to develop mechanisms for calibrating
human self-confidence.

5 STUDY 2 - COMPARING THE EFFECTS OF
DIFFERENT SELF-CONFIDENCE
CALIBRATION MECHANISMS

In our second study, we aim to explore the mechanisms to calibrate
human self-confidence and assess their influence on humans.

5.1 Design of Self-Confidence Calibration
Based on the theory and practice in cognitive science and decision-
making, we propose three self-confidence calibration designs.

Think the Opposite (Think). Research suggests that humans’
overconfidence in their predictions is a common issue [18, 31]. This
often occurs due to biases like anchoring [20, 59, 66] and confirma-
tion bias [57]. People tend to favor information that supports their
views, making it challenging to consider alternatives in decision-
making [11]. To improve self-confidence calibration, we design an
intervention inspired the “pre-mortem” proposed by Klein [32] and
Mitchell [53]. Participants are asked to imagine a scenario where
their initial decision was actually wrong, encouraging them to think
beyond their initial perspective [31]. Based on this theory, we in-
troduce “Thinking the Opposite” (Figure 5 (a)), where users, before
reporting their self-confidence, need to respond to two questions:
(1) “Which features of this profile might favor an alternative pre-
diction?” and (2) “If your prediction is incorrect, what could be the
most likely reason for that?”. By answering these two questions,
users are expected to quantify their confidence more carefully.

Thinking in Bets (Bet) leverages insights from works of Moore
[54] and Duke [17], who proposed to adjust human self-confidence
by using “betting” to incentivize careful consideration of one’s
confidence level. In our design (Figure 5 (b)), participants receive a
200-coin bonus account. They are prompted to decide whether and
how much they want to bet on their predictions for each task (i.e.,
we ask them “Want to bet? How many coins do you want to bet
on your prediction?”), with their account balance adjusted based
on prediction accuracy and the amount bet. For instance, a correct
prediction with a 10-coin bet results in a 10-coin addition to their
account, while an incorrect prediction with a 3-coin bet deducts 3
coins. Participants are informed that their coins will be converted to
bonuses at a rate of 200 points to $1 after they finish the experiment.
Note that real-time balance updates are not provided to prevent
participants from knowing the ground truth.
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Figure 5: Interfaces of different self-confidence calibration conditions. (A) Think the Opposite. (B) Thinking in Bets. (C)
Calibration Status Feedback contains two views, (1) real-time feedback during the decision-making process and (2) post-hoc
feedback after a batch of decision tasks.

Calibration Status Feedback (Feedback) aligns with Moore’s
recommendation [54] to provide evidence-based assessments of per-
formance or probability for self-confidence calibration. To achieve
this in decision-making, we introduce “Calibration Status Feedback”,
offering two feedback interfaces. The first is a real-time feedback in-
terface (Figure 5 (c, left)), providing immediate feedback after each
prediction. Users receive information about the actual answer and
their self-confidence status, categorized as match, over-confident,

or under-confident. A historical confidence status is visually rep-
resented as a colored block and continually updated in the status
bar. The second interface is an overall post-hoc feedback inter-
face (Figure 5 (c, right)), offering both an overview (Figure 5 (1))
and a detailed analysis (Figure 5 (2)). The overview summarizes
the proportions of match, over-confident, and under-confident in-
stances from past feedback sessions. It also calculates the user’s
accuracy and average confidence, providing a high-level summary
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like “Based on your past predictions, you tend to be over-confident”.
In the detailed analysis section, the user’s historical predictions
are segmented into five bins based on confidence distribution. For
each bin, accuracy and average confidence are computed and vi-
sualized as a reliability diagram [5]. An “ideal” reliability diagram
is presented for reference, depicting accurate alignment between
confidence and accuracy to help users discern the disparity between
their self-confidence and “appropriate” self-confidence levels. Previ-
ous research investigating human confidence has studied real-time
and post-hoc feedback separately [22, 61, 71]. We combined these
two feedback types for two reasons. First, using only real-time
feedback might limit participants to remembering their most recent
confidence levels, making it hard for them to have a comprehen-
sive understanding and recall of their confidence status across the
entire 20 task instances. Second, relying solely on overall feedback
could obscure which instances lead to over- or under-confidence.
While this combination may not be perfect, we encourage further
exploration of more effective feedback designs.

5.2 Conditions
In this between-subjects study, to minimize potential interference,
all participants are tasked with making predictions without AI assis-
tance. Participants are randomly assigned to one of four conditions:
• Think the Opposite (Think): In the main task, participants
made their decisions with the Think the Opposite interface (Figure
5 (a)). Before indicating their confidence, participants had to think
of features/attributes that might make the actual answer contrary
to their initial prediction and give their reasons.

• Thinking in Bets (Bet): Using the Thinking in Bets interface
(Figure 5 (b)) in the main task, participants were invited to bet on
their predictions (0-10 coins) before indicating their confidence.

• Calibration Status Feedback (Feedback): Participants first en-
gaged in a feedback session with the Calibration Status Feedback
interface (Figure 5 (c)), and subsequently move on to the main
task (without feedback anymore).

• Control: No calibration is applied in the main task. Participants
just made their decisions and indicated their confidence.

5.3 Research Questions
Focusing on the main research question RQ2: How can humans’
self-confidence be calibrated and how will different self-
confidence calibration mechanisms affect humans’ percep-
tions and user experience?, we raise two sub-questions:
- RQ 2.1: How will different self-confidence calibration mecha-
nisms affect humans’ task performance and the appropriateness
of their self-confidence?

- RQ 2.2: How will different self-confidence calibration mecha-
nisms affect humans’ perceptions (e.g., perceived self-confidence
appropriateness, performance, and complexity) and user experi-
ence (e.g., mental demand, preference, and satisfaction)?

5.4 Task and AI Model
In this study, we continue to employ income prediction as our
decision task, similar to Study 1. We selected 10+20 task instances,
following the data selection criteria established in Study 1. Each
participant, in every condition, first provides 10 predictions without

calibration and then proceeds to make 20 calibrated predictions.
Notably, the Feedback condition includes an extra feedback session,
requiring participants to make 20 additional predictions.

5.5 Procedure
Participants followed this experimental process:
(1) Tutorial: Upon consenting, participants were given a tutorial
on the meanings and value ranges of attributes in the profile table,
including the income distribution per attribute from the training
dataset. Understanding was verified via qualification questions,
allowing only those with correct answers to proceed.
(2) Familiarization task: Participants then completed the first
10 tasks to familiarize themselves with the task nature, without
ground truth information or calibration.
(3) Calibration Mechanism Tutorial: Participants learned about
their assigned calibration mechanism. In the Think and Bet condi-
tions, they experimented with a calibration interface. In the Feed-
back condition, they participated in a feedback session. The Control
condition skipped this step.
(4) Main Task: Moving to the main task (20 cases), participants
expressed their confidence using the experimental interface, cal-
ibration included or not. The session incorporated two attention
checks to ensure data quality.
(5) Exit Survey: Participants concluded with a survey, providing
feedback on their experience.

5.6 Participants
Before recruiting participants, we calculated the required sample
size via a power analysis for the four groups using G*Power [19].
We set the default effect size 𝑓 = 0.25 (indicating a moderate effect),
a significance threshold 𝛼 = 0.05, and a statistical power (1 − 𝛽) =
0.9. This yielded a necessary sample size of 232 participants. After
obtaining institutional IRB approval, we recruited participants from
Prolific3. After excluding those who failed the attention check, we
got 241 valid responses (Think: 57, Bet: 67, Feedback: 55, Control:
62). Among these participants, 117 self-reported as males, 120 as
females, and 4 as non-binary. A total of 35 participants were aged
18-29, 74 aged 30-39, 48 aged 40-49, 48 aged 50-59, and 36 aged
over 59. Participants also self-rated their knowledge of artificial
intelligence: 20 had no knowledge, 176 knew basic AI concepts,
38 had used AI algorithms, and 7 were AI experts. To incentivize
high-quality work, participants received a $1 bonus if their overall
accuracy exceeded 90%. The study lasted approximately 20 minutes,
with participants earning an average wage of about $11 per hour.

5.7 Evaluation Measures and Analysis
5.7.1 Measurements. In this study, we assess both the appropriate-
ness of human self-confidence and their experience.

For the appropriateness of human self-confidence, as in study 1, we
measure ECE. We also measure participants’ Over-confident Ratio
and Under-confident Ratio to gain a nuanced understanding.

Over-Confident Ratio =
Number of incorrect human predictions with high confidence

Total number of human initial predictions
,

Under-Confident Ratio =
Number of correct human predictions with low confidence

Total number of human initial predictions
,
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For user perceptions and user experience, we employ and adapt the
following metrics on a 7-point Likert scale (1: Strongly Disagree, 7:
Strongly Agree). Except for the perceived appropriateness of self-
confidence, the other questions have been validated by previous AI-
assisted decision-making research. We made necessary adaptations
to some items based on our specific scenario. For example, we
replaced the word “system” in the scale used in previous work
with “the decision-making process with the interface” (because our
experimental interface cannot be called a system).

• Perceived appropriateness of self-confidence: "I thinkmy self-confidence
was appropriate (being able to reflect the actual correctness likeli-
hood of my predictions accurately)."

• Perceived performance [33, 73, 75]: "I performed well in this income
prediction task."

• Mental demand [7, 21, 26]: "I found this task mentally demanding."
• Perceived complexity [7]: "The decision-making process with the
interface was complex."

• Preference [7, 37, 43, 68, 86]: "I liked the decision-making process
with this interface."

• Satisfaction [7, 21]: "I was satisfied with the decision-making pro-
cess."

5.7.2 Analysis Method. Based on normality tests, we found most
of the collected data did not follow a normal distribution. Therefore,
we employed Kruskal–Wallis tests with Bonferroni correction.

5.8 Results
5.8.1 Effects on Task Performance and the Appropriateness of Self-
Confidence (RQ 2.1). Figure 6 shows the effects of different cali-
bration interfaces before calibration (in the first 10 familiarization
tasks) and with calibration (in the last 20 main tasks). Since these
two batches involved different task samples, we analyzed the partic-
ipants’ accuracy and ECE in the first 10 and last 20 tasks separately.
In the first 10 familiarization tasks (Figure 6 (a)), we found that
there was no significant difference in accuracy and ECE between
the four conditions before calibration. However, in the main task,
with different calibrations, participants’ accuracy and ECE were
significantly different (Figure 6 (b)). Specifically, for accuracy, par-
ticipants in Think, Bet, and Feedback performed significantly better
than in Control condition. This reveals that the calibration mecha-
nism itself can lead to improved task performance compared to no
calibration. The reason might be that calibration mobilizes more
cognitive resources, makes people think more carefully, and re-
duces errors caused by insufficient thinking. For ECE, we observed
that both Think and Feedback helped participants maintain a more
calibrated self-confidence compared to Control. But there was no
significant difference between Bet and Control. This result reveals
that although seemingly promising, Bet was not effective enough to
calibrate participants’ self-confidence (perhaps the loss of “coins” is
not motivating enough). Moreover, we did not find any significant
differences among different conditions in terms of Over-Confident
Ratio and Under-Confident Ratio. However, we can observe a
trend that Think and Bet might lead to less over-confidence per-
haps because participants in these two conditions were guided to
think of “the opposite” or “possibility of failure”, which led to more
serious quantification of their confidence.

5.8.2 Effects on Human Perceptions and User Experience (RQ 2.2).
Figure 7 shows the effects of different calibration interfaces on
participants’ perceptions and user experience. We found that par-
ticipants perceived their self-confidence to be more appropriate
in Control than in Think and Feedback, which is very interesting
as this subjective result differs from the actual appropriateness
of their self-confidence (in Control, the appropriateness of human
self-confidence is the worst). From this result, we can find that
participants have an unreliable perception of their self-confidence
without calibration (in Control). This also further highlights the
necessity to calibrate people’s self-confidence.

In addition, participants’ mental demands and perceived com-
plexity of the interaction were significantly higher in Think than in
other conditions. Possible reasons are that we asked people to think
about the problem from a second perspective (i.e., the opposite) and
asked people to identify features that might lead to opposite results
and give reasons for them. This complex process brought more
consumption of cognitive resources to the participants, so they felt
that the condition was more complex and mentally demanding. Fur-
thermore, we found a trend that Think led to lower preference and
satisfaction than other conditions. This may be because people are
used to adopting heuristics for quick thinking [31] and forcing them
to analytically think about opposites might change people’s usual
way of thinking, increase the difficulty of decision-making, and lead
to a worse user experience. This finding is consistent with existing
work showing that cognitive forcing functions, although making
people think more carefully, also degraded the user experience [7].
Moreover, compared to Control condition, Bet and Feedback did not
lead to a worse user experience.

5.8.3 A Comprehensive Comparision of Different Calibration Mech-
anisms. We also want to analyze the pros, cons, and applicability of
our proposed three confidence calibration mechanisms (as shown in
Table 2). A general conclusion is that there may not be a perfect cal-
ibration mechanism. Specifically, from the aforementioned results,
we can see that Think is effective for improving the appropriateness
of participants’ self-confidence but it damages participants’ user
experience. And since Think requires extra investment of cognition
resources, it is more suitable for high-stakes tasks and might not
be appropriate for “quick decision-making tasks” that are time-
limited. Besides, although we can observe a trend for Bet to reduce
over-confidence (not significantly), it is ineffective in improving
the overall appropriateness of human self-confidence. And despite
that the incentive “betting” mechanism is interesting, it can be dif-
ficult to apply to certain serious decision-making tasks in which
the incentive mechanism cannot be established. What’s more, al-
though Feedback can effectively improve the appropriateness of
human self-confidence without leading to a worse user experience,
it can cost more time due to the feedback session. And the feedback
session is only feasible when ground truth data is accessible.

Overall, on the one hand, we recommend designers choose a
suitable calibration mechanism based on the specific goal and task
property. For example, if the only purpose is to reduce humans’
over-confidence and the incentive mechanism can be established,
Bet might be a good choice. On the other hand, designers should not
only focus on the effectiveness of confidence calibration but also
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Figure 6: Effects of different calibration conditions on participants’ accuracy and the appropriateness of their self-confidence in
different conditions. (a) Participants’ accuracy and ECE before calibration (in the first 10 familiarization tasks). (b) Participants’
accuracy, ECE, Over-Confident Ratio, and Under-Confident Ratio in themain tasks with calibration. Error bars indicate standard
errors. (*: 𝑝 < 0.05; **: 𝑝 < 0.01; ***: 𝑝 < 0.001)
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Figure 7: Participants’ perceptions and self-reported user experience in different confidence calibration conditions. Error bars
indicate standard errors. (*: 𝑝 < 0.05; **: 𝑝 < 0.01; ***: 𝑝 < 0.001)

Table 2: Summary of the pros, cons, and applicability of the three calibration mechanisms.

Pros Cons Applicability

Think
Opposite

Effective for improving the overall
appropriateness of human

self-confidence; Improving human
task performance

Decreasing user experience Not suitable for “quick”
decision-making

Thinking
in Bets

(Potentially) Effective for reducing
over-confidence; Improving human

task performance

Ineffective in improving the overall
appropriateness of human

self-confidence

The incentive “betting” mechanism
is difficult to apply in certain

decision-making tasks

Calibration
Status

Feedback

Effective for improving the overall
appropriateness of human

self-confidence; Improving human
task performance

Costing more time (due to the
feedback session)

Requiring access to some task
samples with ground truth for
designing the feedback session.

take the potential negative effects on user experience into consider-
ation. In this paper’s task, since it is easy to access the training data
with ground truth, considering both the effectiveness of confidence
calibration and the harmless effects on user experience, we chose
Feedback as our calibration mechanism in Study 3 to further explore
its effects in AI-assisted decision-making.

5.8.4 Summary. This experiment compared the effects of three
calibration mechanisms on people’s task performance and self-
confidence appropriateness, as well as their impacts on users’ per-
ceptions and user experience. The experimental results reveal the
advantages and disadvantages of different calibration mechanisms
and provide designers with insights into the design and selection of
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calibration strategies. We found that the proposed self-confidence
calibration can improve humans’ task performance compared to the
control condition, but not all calibration mechanisms can improve
the appropriateness of human self-confidence (RQ 2.1). Also, Think
led to participants’ worse user experience but Feedback and Bet did
not decrease user experience (RQ 2.2).

6 STUDY 3 - INVESTIGATING THE EFFECTS OF
HUMAN SELF-CONFIDENCE CALIBRATION
ON AI-ASSISTED DECISION MAKING

Our third study aims to explore the effects of the introduction of
self-confidence calibration on AI-assisted decision-making.

6.1 Research Question
Focusing on our main research question RQ3: How will calibra-
tion of humans’ self-confidence affect the appropriateness
of their reliance on AI’s suggestions and task performance?,
we specifically ask the following sub-questions.

- RQ 3.1: How will the calibration of human self-confidence affect
humans’ reliance behaviors?

- RQ 3.2: How will the calibration of human self-confidence affect
the appropriateness of human reliance on AI suggestions (e.g.,
over-reliance, under-reliance)?

- RQ 3.3: How will the calibration of human self-confidence affect
humans’ task performance?

6.2 Task Setup
The task setup mirrors Study 1 and Study 2, employing income
prediction as the decision-making task.

6.3 Conditions
This study delves into the effects of human self-confidence calibra-
tion when collaborating with an AI model that displays its confi-
dence, guided by two considerations. First, most contemporary AI
models are capable of generating probability estimations, i.e., con-
fidence levels, making it a common and feasible practice. Second,
revealing AI confidence is a widely recognized design choice for cal-
ibrating human trust in AI-assisted decision-making [2, 66, 89, 90].
Therefore, we focus on scenarios where AI confidence is presented.
Under this setting, we explore two conditions:

• With Calibration: This condition applies Calibration Status
Feedback to calibrate participants’ self-confidence.

• No Calibration: In this condition, we do not apply any confi-
dence calibration mechanisms to participants.

6.4 Procedure
This between-subjects experiment randomly assigned participants
to either the Calibration or No Calibration conditions. Upon en-
tering the experimental interface, participants underwent a tutorial
to familiarize themselves with the task, which included qualifica-
tion questions to ensure they grasped key task knowledge. In the
Calibration condition, participants then proceeded to a Feedback
session for confidence calibration before entering the main task
session. Participants in the No Calibration condition started with

demo tasks to become familiar with the task process and then di-
rectly engaged in the main task session. During the main task, all
participants first made their initial predictions (and indicated their
confidence), then saw AI’s suggestions with confidence, and finally
made their final decisions.

6.5 Participants
We first calculated the required sample size via a power analysis for
the two groups using G*Power [19]. We set the default effect size
𝑓 = 0.6 (indicating a moderate effect), a significance threshold 𝛼 =
0.05, and a statistical power (1 − 𝛽) = 0.8. This yielded a necessary
sample size of 90 participants. After obtaining institutional IRB
approval, we recruited participants from Prolific3. Throughout the
experiment, we included 2 attention-check questions. After filtering
data from inattentive participants, 117 valid responses remained
(Calibration: 57, No Calibration: 60). Among these participants, 57
self-reported as males, 55 as females, and 5 as non-binary. Age
distribution included 20 participants aged 20-29, 35 aged 30-39,
18 aged 40-49, 26 aged 50-59, and 18 aged over 60. Participants’
self-rated knowledge of artificial intelligence varied, with 7 having
no knowledge, 76 knowing basic AI concepts, 20 having used AI
algorithms, and 14 being AI experts. To incentivize high-quality
work, participants received a $1 bonus in addition to the base pay-
ment if their overall accuracy exceeded 90%. The entire study lasted
approximately 20 minutes, with participants earning an average
wage of about $12 per hour.

6.6 Evaluation Measures and Analysis
6.6.1 Measurements. We measure participants’ self-confidence ap-
propriateness, reliance, task performance, and reliance appropriate-
ness. For self-confidence appropriateness, we use the same metrics
as used in Study 1 and 2.

For reliance, we collect the following measures:

Agreement fraction =
Number of final decisions same as the AI suggestion

Total number of decisions
,

Switch fraction =
Number of decisions user switched to agree with the AI model

Total number of decisions with initial disagreement
,

Follow high confidence fraction =

Number of tasks where user followed the prediction with higher condfidence
Total number of decisions with initial disagreement

,

For task performance, we calculate participants’ initial accuracy
(before seeing AI suggestions) and final accuracy (after seeing AI
suggestions).

Additionally, based on our analytical framework, we calculate:
- Distribution of different C-C Matching: We calculate the ratio

of different human and AI C-C Matching when human initial
predictions disagree with AI suggestions:

Number of predictions in a specific C-C Matching situation
Total number of decisions with initial disagreement

,

- Errors caused by different C-C Matching: We calculate the
occurrence of incorrect human final predictions caused by these
four types of C-C Matching:

Number of incorrect final decisions in a specific C-C Matching situation
Total number of decisions

,

For reliance appropriateness, as Study 1, we assess Under-Reliance
and Over-Reliance. Following [29], we also measure Accuracy-wid
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(accuracy with initial disagreement), a stringent metric for evalu-
ating the appropriateness of human reliance on AI. This measure
focuses on whether individuals can make correct decisions when
initially disagreeing with AI recommendations, thus offering an as-
sessment more independent of human initial accuracy. In contrast,
Under/Over-Reliance does not account for the initial correctness
of human judgments (e.g. an incorrect initial human prediction
followed by acceptance of an incorrect AI suggestion is still deemed
over-reliance). In other words, Under/Over-Reliance is more likely
to be affected by humans’ independent task performance.

Accuracy-wid =
Number of correct final decisions with initial disagreement

Total number of decisions with initial disagreement
,

6.6.2 Analysis Method. For the analysis, since data did not pass
the normality test, we used non-parameter tests. Specifically, we
compared two unpaired groups via Mann-Whitney U tests and
compared two paired groups via Wilcoxon Signed-Rank tests.

6.7 Results
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Figure 8: Manipulation check results: the appropriateness
of human self-confidence in Calibration and No Calibration
conditions. Error bars indicate standard errors. (*: 𝑝 < 0.05;
**: 𝑝 < 0.01; ***: 𝑝 < 0.001)

6.7.1 Manipulation Check. First, we want to verify whether, in
the Calibration condition, participants’ self-confidence in their
initial predictions actually gets calibrated. As shown in Figure 8,
Mann-Whitney U tests reveal that in the Calibration condition,
participants’ ECE score is significantly lower than that in the No
Calibration condition. It reveals that participants’ overall accuracy
and confidence are better matched given calibration. Although
when analyzed separately, no significant improvements are found
in Over-Confident Ratio and Under-Confident Ratio, notable decrease
trends can be observed. These results confirm the effectiveness of
our manipulation.

6.7.2 Effects on Human Reliance Behaviors (RQ 3.1). The calibration
of human self-confidence did not lead to significant differences in
terms of Agreement Fraction and Switch Fraction (see Figure 9).
However, we observed that when their initial predictions differed
from AI’s suggestions, participants in the Calibration condition
more often followed the member (human or AI) who had higher
confidence compared to those in the No Calibration condition.
Since higher confidence can reflect a higher correctness likelihood
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Figure 9: Human reliance behaviors in Calibration and No
Calibration conditions. Error bars indicate standard errors.
(*: 𝑝 < 0.05; **: 𝑝 < 0.01; ***: 𝑝 < 0.001)

especially when both human and AI’s confidence is calibrated,
this result suggests that the calibration of people’s self-confidence
promotes a more rational utilization of the confidence information.
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Figure 10: The appropriateness of human reliance. Error bars
indicate standard errors. (*: 𝑝 < 0.05; **: 𝑝 < 0.01; ***: 𝑝 < 0.001)

6.7.3 Effects on the Appropriateness of Human Reliance (RQ 3.2).
Results reveal that participants in the Calibration condition ex-
hibited significantly lower Under-Reliance than those in the No
Calibration condition (Figure 10). However, no significant differ-
ence is observed in terms of Over-Reliance and Accuracy-wid. This
means that calibrating people’s self-confidence only improves the
appropriateness of people’s reliance in some aspects but not all. We
will further analyze the possible reasons in the Discussion (Sec 7.3).

6.7.4 Effects on Task Performance (RQ 3.3). Figure 11 presents par-
ticipants’ task performance (their initial accuracy and final accuracy
in the two conditions). Mann-Whitney U tests showed that both
participants’ initial and final accuracy in the Calibration condition
surpassed those in the No Calibration condition.

Notably, in the Calibration condition, participants’ final accu-
racy outperformed both the accuracy of AI alone (0.75) and their
initial accuracy. In contrast, in the No Calibration condition, nei-
ther participants’ initial or final accuracy outperformed AI alone. It
indicates the potential of self-confidence calibration for achieving
complementary team performance [2, 70]. We note that Wilcoxon
Signed-Rank tests did not show statistically significant differences
between participants’ initial and final performance in the Calibra-
tion condition. However, the non-significance does not mean that
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Figure 11: Humans’ initial and final performance. Error bars
indicate standard errors. (*: 𝑝 < 0.05; **: 𝑝 < 0.01; ***: 𝑝 < 0.001)

participants did not pay attention to AI suggestions. From the par-
ticipants’ Switch Fraction (the fraction of cases where participants
changed their initial predictions after seeing AI’s recommenda-
tion) in Figure 9, we can see that participants changed their views
27% of the time when they disagreed with the AI’s views. This
indicates that participants’ decisions were influenced by AI’s rec-
ommendation. The reason behind the non-significance in accuracy
improvement may be that self-confidence calibration also improves
their initial performance (similar findings can be seen in Study 2).
The improved initial performance and reduced inappropriate reliance
on AI might jointly act on participants’ improved final performance.
Since the participants’ initial performance (𝑀 = 0.78, 𝑆𝐷 = 0.11)
was already higher than AI (0.75), it was difficult to achieve further
significant improvements in final performance after working with
an AI assistant with slightly lower accuracy.

6.7.5 Effects on the Distribution of Different Disagreements and
Errors. Based on the proposed analytical framework, we further
dig into task performance. Figure 12 (a) displays the distribution of
different C-C Matching situations when human-AI disagreements
occurred. In theCalibration condition, theHuman C-CMismatched
& AI C-C Matched situation is significantly lower than in the No
Calibration condition. Additionally, there is a trend indicating a
higher Human C-C Matched & AI C-C Matched in the Calibration
condition compared to that in theNo Calibration condition. These
findings suggest that calibrating human self-confidence aligns hu-
man confidence more closely with their actual correctness, reducing
mismatches occurring from the human side.

Figure 12 (b) shows a detailed analysis of the occurrence of er-
rors caused by different C-C Matching situations. We can see a
significant reduction in errors caused by Human C-C Mismatched &
AI C-C Matched in the Calibration condition compared to the No
Calibration condition. This indicates that while AI-side errors re-
main uncontrollable, human self-confidence calibration effectively
reduces errors originating from the human side.

We further categorize participants’ decisions only based on the
C-C Matching of the AI side (Figure 13). We find that in task cases
where AI C-C Matched, Calibration results in significantly fewer
error rates compared to No Calibration. Conversely, in task cases
where AI C-C Mismatched, Calibration leads to significantly more
errors than No Calibration. The reason can be tied back to the

results in participants’ reliance behavior (Sec. 6.7.2), calibrating self-
confidence makes participants act more rationally (relying more
on the one who holds higher confidence). When AI C-C Matched,
the AI gives correct recommendations with high confidence or
incorrect recommendations with low confidence, following high
confidence will lead to a higher likelihood to be correct. On the
contrary, when AI C-C Mismatched, the AI gives correct recommen-
dations with low confidence or incorrect recommendations with
high confidence. At this time, following high confidence will lead
to more errors. However, it’s important to recognize that when
an AI’s confidence is accurately calibrated, instances of AI C-C
Matched will significantly outnumber those of AI C-C Mismatched.
Therefore, calibrating human self-confidence accordingly should
result in more benefits than drawbacks.

6.7.6 Summary. In general, calibrating people’s self-confidence
makes people act more rationally when only confidence informa-
tion exists (RQ 3.1). However, confidence calibration only reduced
under-reliance in our setting (RQ 3.2). Furthermore, self-confidence
calibration improves people’s initial accuracy and final accuracy
(RQ 3.3). A detailed analysis shows that the performance improve-
ment may be due to the reduced occurrence of C-C Mismatched and
the corresponding errors on the human side. Additionally, we found
when AI C-C Matched, the calibration of human self-confidence
significantly reduced the error rate. We also discovered when the
confidence of the AI does not match its correctness, the calibration
of human confidence has a negative effect. Therefore, more future
work is needed to specifically address this issue.

7 DISCUSSION
This paper underscores the pivotal role of the appropriateness of hu-
man self-confidence in AI-assisted decision-making. Our proposed
analytical framework integrates the confidence-correctness match-
ing from both human and AI perspectives. Through this framework,
we delve into the causes of humans’ inappropriate reliance and an-
alyze the potential of calibrating human self-confidence.

Our research comprises three consecutive empirical studies cen-
tered on understanding the effects of self-confidence calibration
in AI-assisted decision-making. The first study investigates the
relationship between human self-confidence appropriateness and
the appropriateness of their reliance, emphasizing the significance
of improving human self-confidence appropriateness in decision-
making. Building upon cognitive science theories, the second study
proposes three calibration mechanisms, empirically assessing their
impact on self-confidence appropriateness and user experience. Fol-
lowing this, the third study incorporates the calibration of human
self-confidence into the AI-assisted decision-making process, un-
covering its advantages as well as its limitations. In this section,
we delve into a comprehensive discussion of our principal findings
and offer insights into design implications.

7.1 Inappropriate Reliance: Over/Under-Trust
in AI OR Under/Over-Confident in Oneself?

Previous studies on AI-assisted decision-making have often focused
on calibrating people’s trust in AI when promoting appropriate
reliance [2, 89, 90]. They attribute that over-reliance on AI stems
from over-trusting AI, while under-reliance on AI results from
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Figure 12: A detailed analysis comparing Calibration and No Calibration based on the proposed analytical framework. (a) The
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under-trusting AI. However, we argue that this attribution over-
simplifies the issue without adequately considering the confidence
factor from the human perspective.

We propose that inappropriate reliance can arise from both inap-
propriate trust in AI and inappropriate confidence in oneself. For in-
stance, when people adopt an incorrect suggestion from AI, it might
be due to both over-trusting AI and being under-confident. The
reasons for these two behaviors differ significantly. Over-trusting
AI might result from automation bias [13] or be influenced by cer-
tain elements/information of AI, such as stated accuracy [88], high
confidence levels [89], or seemingly convinced explanations [2].
On the other hand, under-confidence in oneself might stem from
insufficient task expertise, recent task failures, incomplete task
information, or other psychological factors [56]. By conducting
retrospective analyses with our proposed analytical framework, de-
signers can identify root causes and make targeted improvements
to specific aspects of the human-AI system. Our proposed analyti-
cal framework, which examines inappropriate reliance from two

perspectives, can complement existing research, offering a new
viewpoint to comprehend the basis of inappropriate reliance.

7.2 Rational Reliance with Limited Information
In AI-assisted decision-making, where ground truth remains un-
known to both humans and AI, it’s crucial to make nuanced reliance
decisions based on calibrated confidence [25, 89]. When faced with
disagreements and access to confidence levels from both parties,
adopting the suggestion of the higher-confidence party is a rational
choice, as our proposed calibration conditions suggest. However,
it’s essential to acknowledge that this rational behavior doesn’t
consistently lead to more accurate decisions. Study 3, for instance,
yielded mixed outcomes. While calibrating human self-confidence
reduced error rates significantly when AI C-C Matched, error rates
increased substantially in cases of AI C-C Mismatched. Unfortu-
nately, AI C-C Mismatched cannot be eliminated even when AI’s
confidence is well-calibrated. Thus, addressing people’s reliance
in AI C-C Mismatch necessitates an approach beyond human self-
confidence calibration, potentially involving educating individuals
about AI error boundaries to make more nuanced judgments [1].

7.3 The Complicated Relationship between the
Appropriateness of Self-Confidence and the
Appropriateness of Reliance

In Study 3, we found that calibrating human self-confidence reduces
under-reliance but doesn’t significantly impact over-reliance and
accuracy-wid. We posit three possible reasons for such insufficient
improvement. First, while calibrating human self-confidence im-
proves its appropriateness, the extent of improvement falls short.
This is evident in Figure 8, where the Over-Confident Ratio and
Under-Confident Ratio in the Calibration condition only show
trends towards decrease but lack statistical significance. There-
fore, future work needs to design more effective self-confidence
calibration mechanisms to further enhance the appropriateness of
people’s self-confidence. Second, self-confidence calibration also
brings side effects, that is, when AI C-C Mismatched, because people
tend to follow the prediction of the party with higher confidence,
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the error rate increases compared with no calibration. Third, the
relationship between self-confidence and reliance on AI is intri-
cate and nonlinear. This complexity aligns with findings in He et
al.’s study [29]. Inappropriate self-confidence is only one of many
causes of inappropriate reliance. Despite there being a significant
correlation between the appropriateness of self-confidence and the
appropriateness of reliance (Study 1), note that correlation does not
equal causation. We envision a more complex interplay of factors
influencing this relationship, including humans’ expertise, AI liter-
acy, intrinsic trust in AI, and cognitive biases, among others. Thus,
solely calibrating self-confidence may not suffice to foster appropriate
reliance on AI. Future research is needed for a deeper understanding
of this intricate logic.

7.4 Multifaceted Effects of Self-Confidence
Calibration on Final Task Performance

We observed an improvement in humans’ task performance with
self-confidence calibration. Based on our analysis, the improved
task performance results from three pivotal factors. The first factor
is improved human independent accuracy. Study 2 and Study 3
demonstrate that in the Calibration condition, individuals exhibit
significantly improved initial performance compared to theNo Cal-
ibration condition. This enhancement might arise from increased
engagement in System 2 thinking during the calibration process,
reducing errors resulting from inadequate analytical thinking [31].
The second factor is improved self-confidence appropriateness. Self-
confidence calibration directly reduces the occurrence of Human
C-CMismatch and diminishes errors stemming from suchmismatch.
The third factor is humans’ appropriate reliance on AI. Calibration
helps people make more rational reliance choices when facing dis-
agreements.

In summary, the final task performance improvement is a prod-
uct of multifaceted factors. This insight suggests that to enhance
human-AI collaboration, apart from focusing on improving AI per-
formance, designers should treat the human-AI collaboration as a
whole system, making efforts from diverse perspectives.

7.5 Implications for Future AI-Assisted
Decision-Making Interface Design

Based on the key findings from our studies, we present several
design recommendations for designers’ consideration.

DR1: Calibrating User Self-Confidence Before Initiating
Tasks. The results from Study 1 suggest that inappropriate user
self-confidence exacerbates inappropriate reliance. Therefore, be-
fore designing or deploying AI-assisted decision-making systems,
it’s crucial to gather users’ prediction data through a testing phase
to understand users’ self-perceived competence (i.e., confidence)
in the current task. If users’ self-confidence is unreliable, interven-
tions to calibrate user confidence should be implemented in such
cases. Alternatively, designers may consider making confidence
calibration a default setup in AI-assisted decision-making.

DR2: Diagnosing and Improving the System Using the An-
alytical Framework.We encourage designers, during the iterative
phase of AI-assisted decision-making system development, to use
our proposed analytical framework to “diagnose” the confidence
calibration status of users and AI, analyze the underlying causes

of inappropriate reliance, and make targeted improvements. For
instance, developers or designers can statistically analyze user pre-
diction data from both the Human and AI perspectives regarding
C-C Matching. If a significant C-C Mismatch exists among users,
designers should introduce calibration mechanisms to refine users’
self-confidence. Conversely, if AI C-C Matching issues prevail, de-
signers should collaborate with AI algorithm engineers to optimize
confidence calibration in AI.

DR3: Choosing Suitable Calibration Based on Calibration
Purpose and Task Properties. There’s no one-size-fits-all cali-
bration mechanism. When choosing calibration methods, designers
should compare various options based on the calibration’s purpose
and task properties. For instance, if target users tend to be over-
confident in the selected task, reducing their confidence can be
achieved by emphasizing the cost of decision errors (e.g., Bet) or
encouraging them to approach problems from the opposite perspec-
tive (e.g., Think). If the task itself provides ground truth data for
training, designing a feedback session to calibrate user confidence
could be effective.

DR4: Considering User Experience in Calibration Design.
When designing calibration interfaces, designers should not only
test calibration effectiveness but also consider its impact on user
experience. Some calibration methods might demand higher cogni-
tive effort from users, leading to increased cognitive burden and
decreased satisfaction. Therefore, these methods might not suit
certain user groups averse to critical thinking. Designers should in-
corporate user experience and tailor calibration methods according
to the attributes of target users. For instance, designers can pre-
assess target users’ intrinsic cognitive motivation through Need for
Cognition (NFC) scales [9] and then design interventions accord-
ingly. For example, employing Think on people with high NFC.

DR5: Using Self-Confidence Calibration for Training Pur-
poses.Our results revealed that calibrating user confidence directly
enhances users’ independent task performance (see Study 2 and
3). Although calibration differs from formal training, it effectively
fulfills a similar role. Consequently, designers have the opportu-
nity to utilize confidence calibration as a training method or to
enhance user task performance further by integrating calibration
with traditional training approaches.

DR6: Ensuring AI Confidence Calibration Before Human
Confidence Calibration. Results from Study 3 indicate that cal-
ibrating human confidence only significantly enhances reliance
appropriateness when AI C-C Matched. Calibrating human confi-
dence in the case of AI C-C Mismatched may lead to more incorrect
reliance. Therefore, if designers aim to incorporate human self-
confidence calibration into decision-making interfaces, it is essen-
tial to assess the degree of AI confidence calibration beforehand.

DR7: Guiding Rational Use of Confidence Information.
In situations where both human and AI confidence are well cal-
ibrated, following the viewpoint of the higher-confidence party
may yield higher expected benefits. While our results indicate an
increase in the “follow high confidence fraction”, there’s still room
for improvement. Designers can implement additional designs to
directly enhance people’s comprehension of the concepts and ben-
efits of calibrated confidence and encourage people to consider the
predictions of the party with higher confidence more seriously.
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7.6 Limitations and Future Work
7.6.1 Extending to multi-level confidence. In our analytical frame-
work, we categorize human and AI’s confidence into two levels,
which is not fine-grained enough. Actually, our analytical frame-
work can be generalized to multi-level confidence. However, this
will bring combinatorial complexity as we need to not only consider
whether the confidence-correctness is matched, but also consider
the degree of matching (e.g., [correct & 95% confidence] is more
matched than [correct & 85% confidence]). Moreover, the level of
confidence can also be the relative value between a human and
an AI. For example, if AI confidence is 55%, then a person’s 65%
confidence can be seen as “higher” confidence. At the current stage,
the two-level division is enough to give us preliminary insights. In
future work, we will expand the proposed analysis framework to
more fine-grained confidence, and explore whether it can be used
to analyze the relative confidence levels of humans and AI.

7.6.2 Generalizability of Proposed Calibration Mechanisms. The
analysis of the appropriateness of human self-confidence requires
individuals to make independent judgments before accessing AI
suggestions, which may not suit scenarios prioritizing efficiency
and one-stage decision-making. In addition, gathering users’ con-
fidence requires users’ extra effort (although slight) and may not
mirror natural decision-making processes where users form implicit
confidence in their minds. Future research should explore methods
to infer confidence accurately from decision-making behaviors, like
users’ hesitation. Additionally, the three self-confidence calibration
mechanisms we proposed all have limitations: Feedback relies on
historical data for calibration; Think Opposite may impose cognitive
burdens; and Bet isn’t universally applicable due to its reliance
on economic incentives. Nonetheless, the concept of human self-
confidence calibration and the analytical framework can be applied
to diverse decision-making tasks. Future work is encouraged to de-
vise more effective self-confidence calibration strategies for specific
decision-making scenarios.

7.6.3 Personalized Calibration. Different calibration strategies of-
fer unique advantages. For example, Think reduces over-confidence
and may benefit those prone to overconfidence. Similarly, Bet may
affect different groups differently; it could boost the confidence of
risk-takers while reducing the confidence of risk-averse individuals.
This paper only explores the effectiveness of diverse calibration
strategies on the whole population. A potential future direction is
to investigate user-personalized calibration, tailoring methods to
individuals with different characteristics.

7.6.4 Calibrating Humans’ Perceptions of AI Confidence. One in-
teresting finding is that even when humans and AI are both C-C
Matched, humans can still make incorrect decisions. Our paper
only calibrates humans’ self-confidence. Humans’ perception of
AI’s confidence may also need to be calibrated. Future research
should explore “dual calibration”, investigating the combined im-
pact on AI-assisted decision-making.

8 CONCLUSION
This paper provides a comprehensive understanding of the impact
of human confidence calibration in AI-assisted decision-making.

We first propose a novel analytical framework to parse inappro-
priate reliance from the perspective of human and AI confidence-
correctness matching. Through three user studies, we make three
contributions: (1) analyzing the relationship between the appro-
priateness of human self-confidence and the appropriateness of
human reliance, (2) designing and comparing different confidence
calibration mechanisms, and (3) examining the impact of human
confidence calibration on humans’ behavior, task performance,
and reliance appropriateness when working with AI that shows
confidence. In summary, this paper provides a unique perspective
on understanding and promoting humans’ appropriate reliance
in AI-assisted decision-making, shedding light on the calibration
of human self-confidence. We hope that our research will enrich
the understanding and discourse within the research community
on this topic and pave the way for further research on human
self-confidence calibration in human-AI collaboration.
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