
 

Implicit Detection of Motor Impairment 
in Parkinson’s Disease from Everyday 
Smartphone Interactions 

 

Abstract 

In this work, we explored the feasibility and accuracy of 

detecting motor impairment in Parkinson’s disease (PD) 

via implicitly sensing and analyzing users’ everyday 

interactions with their smartphones. Through a 42 

subjects study, our approach achieved an overall 

accuracy of 88.1% (90.0%/86.4% sensitivity/specificity) 

in discriminating PD subjects from age-matched healthy 

controls. The performance was comparable to the 

alternating-finger-tapping (AFT) test, a well-established 

PD motor test in clinical settings. We believe that the 

implicit and transparent nature of our approach can 

enable and inspire rich design opportunities of 

ubiquitous, objective, and convenient systems for PD 

diagnosis as well as post-diagnosis monitoring. 
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Introduction 

Parkinson’s disease (PD) is one of the most common 

neurological diseases (8-18 per 100,000 persons [8]), and 

the rate is likely to increase as the elderly population 
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becomes larger in the near future. PD severely affects 

patients’ well-being and quality of life, due to its motor 

impairment symptoms (e.g., tremor, bradykinesia, 

postural instability, gait difficulty, and rigidity), and non-

motor signs (e.g., cognitive alteration or sleep 

disturbances [3]). The most commonly used metric in 

traditional clinical evaluation is the Unified Parkinson’s 

Disease Rating Scale (UPDRS), which consists with a 

metric of standardized test in each of the aforementioned 

motor- and non-motor dimensions. However, it suffers 

from several major constraints. The clinical practitioners 

need to have significant training to conduct the 

assessment, yet cannot guarantee the minimum inter-

rater variability in interpretation. Meanwhile, when a 

subject experiences evident symptom and is diagnosed 

with PD through UPDRS, it is too late for her to receive 

early interventions at the mild stage of the disease.  

Researchers as well as clinical practitioners shared a keen 

interest in the exploration of technology for objective and 

low-cost PD assessment. A variety of techniques have 

been proposed to measure a broad range of PD signs. The 

most common approach is using accelerometers to 

develop fine-grained motor tracking tools [7, 14, 13]. 

However, the use of specialized sensors in an obtrusive 

way can limit the wide adoption of such approaches. At 

the same time, researchers have also explored using 

commodity device such as smartphones for PD evaluation. 

One of the most well-known studies is mPower [2], which 

collected longitudinal data from a large number of PD 

patients and controls when they performed certain tasks 

including memory tests, voice tests, finger tapping tests, 

and gait tests. A common limitation of prior work is that 

they require subjects’ explicit and active participation 

while it is difficult to sustain users’ motivation, especially 

when the symptoms are not evident. Moreover, the nature 

of explicit test may impact subjects’ physical behaviors 

which may further introduce the risk of less reliable results.  

In this work, we explore detecting PD via sensing and 

analyzing users’ everyday interactions with smartphones 

(e.g., typing a text message, swiping a photo, etc.). The 

design rationale behind this approach is that the PD motor 

symptoms such as bradykinesia, tremor, and rigidity could 

affect hand and finger performance while interacting with 

smartphones, which could be detected by the touchscreen 

and other embedded sensors such as the accelerometer 

and the touch pressure sensor. We hypothesize that we 

can build a machine learning model that can distinguish 

PD patients from the healthy subjects implicitly. We use 

the term “implicit” to differentiate our envisioned 

scenarios with those that require users to mount sensing 

equipment, “explicitly” launch monitoring apps, and spend 

an uninterrupted amount of time in data collection. In 

comparison, our approach can evaluate and monitor PD as 

a side effect during everyday tasks (Figure 1).  

We provide empirical evidence to demonstrate the 

feasibility and accuracy of detecting PD motor impairment 

from daily smartphone interactions. We also evaluated 

the accuracies of using various subset of sensor signals 

in the machine learning models. Through a 42 subjects 

study (20 PD patients and 22 age-matched healthy 

controls), our approach achieved an overall 

classification accuracy of 88.1% (with 90.0%/86.4% 

sensitivity/specificity), which was comparable to the 

performance of common motor tests (e.g., alternating-

finger-tapping test, aka AFT) in clinical settings.  

Related Work 

Researchers have explored using novel sensor 

technologies in PD clinical diagnosis, post-diagnosis 

 
Figure 1. Common smartphone 

interactions explored in this study. 

A: dial numbers; B: type text 

messages; C: swipe screen; D: draw 

graphical password; E: handwrite 

characters; F: zoom in/out pictures; 

G: rotate pictures; H: alternating 

finger tapping (clinical reference). 
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monitoring, and supporting patients during recent years 

[6, 15, 14, 9, 10, 1]. One of the common themes is to 

leverage these technologies to compliment the current 

clinical diagnosis practice [6, 15, 13]. For example, [6] 

and [15] are among the earliest works of designing 

portable sensing equipment to quantify PD patients’ 

response time and abnormal muscle movements in 

dedicated assessment tasks. Other researchers aimed to 

utilize widely accessible sensors and commodity devices to 

detect PD symptoms [1] or support PD patients [9, 10]. 

The most related work with our work is [1], in which the 

authors proposed an algorithm and a set of useful 

features to detect PD signs via analyzing the timing 

information of typing on smartphones. In comparison, our 

work provides wider coverages in both sensing channels 

(e.g., touch pressure, accelerometer) and interaction 

tasks (e.g., a set of common tasks), which can help the 

community gain more fundamental and comprehensive 

understanding of both strengths and limitations of such 

approach.  

In addition to PD diagnosis, researchers have also 

explored using sensor technologies to empower the 

patients to frequently monitor the natural progression of 

the disease at home during the gaps between clinical 

visits [7, 5, 12, 11]. For example, [7] uses six sets of 

accelerometers attached to a patient’s body (e.g., arms, 

chest, and legs) to monitor her daily activities at home 

(e.g., washing hands). [5] uses non-intrusive and 

inexpensive Kinect sensor to detect and analyze full body 

gait at PD patients’ homes. However, one common 

limitation in all these technology designs is that the user 

still needs to allocate specific time and effort to 

accomplish certain assessment task, though some 

technology designs (e.g., smartphone, Kinect [5], Fitbit 

[12], and Google Glass [11]) are less intrusive than the 

others.  

Experiment 

We collected smartphone interaction data from 20 

subjects diagnosed with PD and 22 age-matched 

healthy controls. PD was diagnosed via clinical 

evaluations including the UPDRS-Ⅲ test and magnetic 

resonance imaging (MRI) test conducted by at least two 

expert physicians. The experimental procedures were 

approved by the Institutional Review Board of Peking 

Union Medical College Hospital. Subjects gave informed 

consent before the data collection process. Table 1 

summarizes the demographic information of the 

subjects in this study. According to the two-sided 

Mann-Whitney U tests, PD subjects and controls are 

statistically similar in age and education length. All PD 

subjects were tested during the “ON” stage under best 

medical treatment. Patients with cognitive impairment 

were excluded for this study.  

We used a HUAWEI P9 Plus smartphone running 

Android 7.0 for data collection. It has a 5.5 inch, 

1080*1920 pixels display. It also has a pressure sensor 

on top of the touchscreen.  

Participants first performed the alternating-finger-

tapping (AFT) test with the smartphone. They need to 

alternately tap two rectangles of 12 by 12 millimeters, 

separated by 6 millimeters, by using their index finger 

and middle finger on the same hand for 10 seconds. 

They repeated this test for 3 times with each hand. The 

average number of taps was recorded. Despite its 

simplicity, AFT has been widely used to quantify upper 

limbs dexterity for PD evaluation and we included this 

test as an external clinical reference.  

 

Table 1. Demographic information of 

the study participants. 

 

 

 

Figure 2. Sample pictures of 

participants in this study. 
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We collected the interaction activity data when 

participants performed a variety of touch gestures with 

a smartphone (Figure 1), including static gestures (e.g., 

tap), one-finger manipulation gestures (e.g., slide, drag, 

handwriting gesture), and two-finger manipulation 

gestures (e.g., pinch, spread, rotate). In order to 

reflect the actual routine use of smartphone, they were 

informed to perform these gestures in daily usage 

scenarios, including dialing phone numbers, typing text 

messages, swiping the screen left or right, drawing 

graphical passwords, handwriting Chinese characters, 

zooming in or out pictures, and rotating pictures. The 

interaction activity data, including screen pixel positions, 

screen pressure values, accelerometer outputs, and 

their corresponding timestamps, were collected. We 

divided the data collection into five rounds, each round 

consisted of two repetitions of each task in a 

randomized order. Participants could pause and had a 

break any time during the study. On average, it took 

around one hour for each participant to complete the 

study. Table 2 shows the tasks, sensors, and features 

calculated from the sensor outputs.  

Preliminary Results 

We applied leave-one (subject)-out-cross-validation 

(LOOCV) and explored six classification methods (i.e. 

KNN, SVM, Decision Tree, Random Forest, Naïve Bayes, 

and AdaBoost) by using the Weka toolkit. For 

conciseness, we only report the results of AdaBoost 

(using DecisionStump as base classifier, 10 iterations) 

in the rest of the paper since it achieved better 

performance than other methods.  

The overall classification accuracy is 88.1% (with 

90.0%/86.4% sensitivity/specificity) using the common 

smartphone interaction data. The Mann-Whitney U test 

shows that the accuracy is significantly higher than the 

clinical references, including both the traditional AFT 

test merely relying on tap counting (71.4% accuracy, 

70.0%/72.7% sensitivity/specificity, p<0.05) and 

sensor-enhanced-AFT test relying on both tap counting 

and other features calculated from the sensor outputs 

(83.3% accuracy, 85.0%/81.8% sensitivity/specificity, 

p<0.05). 

We also conducted a comparison across all the tasks 

explored in the study. To make the comparison fair, we 

split the interaction data into 5-second length windows 

and report the average classification accuracies. Figure 

3 shows the classification accuracies corresponding to 

different interaction tasks. Drawing graphical password 

(D) and handwriting Chinese characters (E) result in 

highest average accuracy (85.7%), followed by sensor-

enhanced-AFT test (H’, 80.9%). Tap counting (H) 

results in the lowest average accuracy (64.3%). Major 

findings include: 

 
Table 2. Tasks and the corresponding features explored in the study. 
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Finding 1: Detection accuracy based on sensor-

enhanced AFT (H’) is significantly higher than tap 

counting (H).  

Finding 2: Detection accuracies based on drawing 

graphical password (D) and handwriting Chinese 

characters (E) are significant higher than tap counting 

(H).  

Finding 3: There is no significant difference between 

detection accuracies based on everyday interaction 

tasks and the sensor-enhanced AFT (H’).  

We attribute the significant improvement achieved by 

sensor-enhanced AFT (H’), drawing graphical password 

(D), and handwriting (E), compared with traditional 

AFT (H), to the fact that the richer features can better 

capture the motor abnormalities that are a direct 

representation of PD signs. Overall, these findings 

suggest that analyzing the common smartphone 

interactions can achieve comparable detection 

accuracies with widely adopted clinical motor test (i.e. 

AFT), which shed light on the feasibility of implicit 

detection of PD impairment from everyday smartphone 

interactions.  

To gain further insights on the relative importance of 

different types of features, we compared the 

classification accuracies of using gesture features, 

pressure features, and accelerometer features. Figure 4 

shows the results. We have the following finding from 

this comparison. 

Finding 4: The average detection accuracies of using 

pressure features (81.0%) and accelerometer features 

(83.3%) are higher than using gesture features (69.0%) 

while the significance is marginal.  

We attribute this result to the interference of personal 

interaction style (e.g., typing skill, familiarity with 

manipulation gestures, etc.) on the gesture features. It 

is worth further exploration of how to minimize such 

effect on the analysis, e.g., normalize the dialing and 

typing data by subtracting the mean value to every 

data sample.  

Discussion and Future Work 

In this work we demonstrate the feasibility of implicit 

detection of PD motor impairment by analyzing users’ 

smartphone interaction activities when they perform a 

variety of everyday tasks. We believe that the high 

classification accuracies are achieved because of the 

hand tremor, finger bradykinesia, rigidity and other PD 

signs may alter smartphone interaction kinetics in a 

way detectable through analyzing data from rich 

sensors such as accelerometers, pressure sensors and 

touchscreens. Users do not need to wear any dedicated 

sensor or to perform a structured test. The detection 

happens implicitly and passively without interfering 

with the normal use of smartphones.  

Our methods were tested in a controlled environment. 

Although participants were asked to perform these 

tasks as they would normally do to mimic actual routine 

use of smartphones, further large-scale deployments in 

naturalistic settings are necessary to discard a 

significant impact of the controlled study on 

participants’ interaction behavior. Moreover, we plan to 

include a larger and more balanced cohort that enables 

a comprehensive review of the influence of the 

 

Figure 3. Classification accuracies 

corresponding to different interaction 

tasks. A: Dialing; B: Typing; C: 

Swiping; D: Drawing graphical 

password; E: Handwriting 

characters; F: Zooming in/out 

pictures; G: Rotating pictures; H: 

Traditional AFT (i.e. tap counting); 

H’: Sensor-enhanced AFT 

 

 

Figure 4. Classification accuracies of 

using different feature sets.  
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potential confounding variables such as disease stage, 

medication state and cognitive deficits.  

It is worth exploration of developing a regression model 

based on the current classification model, which could 

make it possible to conduct fine-grained evaluation on 

the motor function and the disease progression. 

Additional information from user’s everyday 

smartphone interaction, such as voice signal during 

phone calls, accelerometer data during idle periods, can 

be used to complement the current analysis. 

This work was supported by National Key R&D Program 

of China (2016YFB1001405), NSFC (61232013 and 

61422212), CAS Key Research Program of Frontier 

Sciences (QYZDY-SSW-JSC041), and CAS Pioneer 

Hundred Talents Program. 
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